Genomic Changes of Chagas Disease Vector, South America

We analyzed the main karyologic changes that have occurred during the dispersion of Triatoma infestans, the main vector of Chagas disease. We identified two allopatric groups, named Andean and non-Andean. The Andean specimens present C-heterochromatic blocks in most of their 22 chromosomes, whereas non-Andean specimens have only 4–7 autosomes with C-banding. These heterochromatin differences are the likely cause of a striking DNA content variation (approximately 30%) between Andean and non-Andean insects. Our study, together with previous historical and genetic data, suggests that T. infestans was originally a sylvatic species, with large quantities of DNA and heterochromatin, inhabiting the Andean region of Bolivia. However, the spread of domestic T. infestans throughout the non-Andean regions only involved insects with an important reduction of heterochromatin and DNA amounts. We propose that heterochromatin and DNA variation mainly reflected adaptive genomic changes that contribute to the ability of T. infestans to survive, reproduce, and disperse in different environments.

[1]  C. Beard,et al.  Molecular tools and triatomine systematics: a public health perspective. , 2001, Trends in parasitology.

[2]  M. Torres,et al.  Similarity of the patterns of sensilla on the antennae of Triatoma melanosoma and Triatoma infestans , 2001, Annals of tropical medicine and parasitology.

[3]  J. Dujardin,et al.  Sylvatic population of Triatoma infestans from the Bolivian Chaco: from field collection to characterization. , 2000, Memorias do Instituto Oswaldo Cruz.

[4]  I. Gorlov,et al.  STAGGERED CLINES IN A HYBRID ZONE BETWEEN TWO CHROMOSOME RACES OF THE HARVESTMAN GAGRELLOPSIS NODULIFERA (ARACHNIDA: OPILIONES) , 2000, Evolution; international journal of organic evolution.

[5]  C. Beard,et al.  Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. , 1999, Memorias do Instituto Oswaldo Cruz.

[6]  J. Dujardin,et al.  Smallness of the panmictic unit of Triatoma infestans (Hemiptera: Reduviidae). , 1998, Journal of medical entomology.

[7]  L. Diotaiuti,et al.  Variations of the external male genitalia in three populations of Triatoma infestans Klug, 1834. , 1998, Memorias do Instituto Oswaldo Cruz.

[8]  Schofield,et al.  Population structure of Andean Triatoma infestans: allozyme frequencies and their epidemiological relevance , 1998, Medical and veterinary entomology.

[9]  J. Dujardin,et al.  Detection of sylvatic dark morphs of Triatoma infestans in the Bolivian Chaco. , 1997, Memorias do Instituto Oswaldo Cruz.

[10]  J. Suja,et al.  Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera) , 1997, Chromosome Research.

[11]  J. Dujardin,et al.  C-heterochromatin polymorphism in holocentric chromosomes of Triatoma infestans (Hemiptera : Reduviidae) , 1992 .

[12]  H. Hirai,et al.  Constitutive heterochromatin polymorphism of a Triatoma infestans strain, a main vector insect of Chagas' disease , 1991 .

[13]  M. Tibayrenc,et al.  Étude de 11 enzymes et données de génétique formelle pour 19 loci enzymatiques chez Triatoma infestans (Hemiptera: Reduviidae) , 1985 .

[14]  Ira Vaughan Hiscock,et al.  Genetics of the Evolutionary Process , 1971, The Yale Journal of Biology and Medicine.

[15]  A. Solari Autosomal synaptonemal complexes and sex chromosomes without axes in Triatoma infestans (Reduviidae; Hemiptera) , 2004, Chromosoma.

[16]  J. Dujardin,et al.  The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. , 2001, Molecular phylogenetics and evolution.

[17]  D. Petrov Evolution of genome size: new approaches to an old problem. , 2001, Trends in genetics : TIG.

[18]  A. Marcilla,et al.  Populations of Triatoma infestans (Hemiptera: Reduviidae) from Paraguay: a molecular analysis based on the second internal transcribed spacer of the rDNA. , 2000 .

[19]  C. Galvão,et al.  Phylogeny of the Triatominae (Hemiptera: Reduviidae). Proposals for taxonomic arrangements. , 2000 .

[20]  J. Dujardin,et al.  Triatominae as a model of morphological plasticity under ecological pressure. , 1999, Memorias do Instituto Oswaldo Cruz.

[21]  C. Vosa Heterochromatin and ecological adaptation in Southern African Ornithogalum (Liliaceae) , 1997 .

[22]  R. Verma Heterochromatin : molecular and structural aspects , 1988 .

[23]  F. Ayala,et al.  Isozyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera: Reduviidae) in Bolivia. , 1987, Journal of medical entomology.

[24]  T. Cavalier-smith The Evolution of genome size , 1985 .

[25]  A. C. Silveira,et al.  Distribuicao de triatomineos capturados no ambiente domiciliar, no periodo 1975/83, brasil , 1984 .

[26]  Í. Sherlock,et al.  An outbreak of acute Chagas's disease in the São Francisco Valley region of Bahia, Brazil: triatomine vectors and animal reservoirs of Trypanosoma cruzi. , 1979, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[27]  R. Ryckman,et al.  The biosystematics of Triatominae. , 1966, Annual review of entomology.

[28]  J. J. Osimani,et al.  Los 100 primeros casos agudos confirmados d" enfermedad de Chagas (Tripanosomiasis americana) en el Uruguay. Estudio epidemiológico, clínico y parasitológico. , 1940 .