Multimodal optimization using crowding-based differential evolution

Multimodal optimization is an important area of active research within the evolutionary computation community. The ability of algorithms to discover and maintain multiple optima is of great importance - in particular when several global optima exist or when other high-quality solutions might be of interest. The differential evolution algorithm (DE) is extended with a crowding scheme making it capable of tracking and maintaining multiple optima. The introduced CrowdingDE algorithm is compared with a DE using the well-known sharing scheme that penalizes similar candidate solutions. In conclusion, the introduced CrowdingDE outperformed the sharing-based DE algorithm on fourteen commonly used benchmark problems.

[1]  R. K. Ursem Multinational evolutionary algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[3]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[4]  K. Warwick,et al.  Dynamic Niche Clustering: a fuzzy variable radius niching technique for multimodal optimisation in GAs , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[5]  David E. Goldberg,et al.  Probabilistic Crowding: Deterministic Crowding with Probabilistic Replacement , 1999 .

[7]  P. Vadstrup,et al.  Parameter identification of induction motors using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[8]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[9]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[10]  R. Thomsen Flexible ligand docking using differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[11]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[12]  Patrick Siarry,et al.  Island Model Cooperating with Speciation for Multimodal Optimization , 2000, PPSN.

[13]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[14]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .