On the security of biquadratic C∗ public-key cryptosystems and its generalizations
暂无分享,去创建一个
[1] Adi Shamir,et al. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.
[2] Jacques Patarin,et al. Asymmetric Cryptography with a Hidden Monomial , 1996, CRYPTO.
[3] Pierre-Alain Fouque,et al. Practical Key-recovery For All Possible Parameters of SFLASH , 2011, IACR Cryptol. ePrint Arch..
[4] Hideki Imai,et al. Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.
[5] Ming-Deh A. Huang,et al. Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP , 2015, CRYPTO.
[6] Christophe Petit,et al. First fall degree and Weil descent , 2014, Finite Fields Their Appl..
[7] Jean-Jacques Quisquater,et al. On Polynomial Systems Arising from a Weil Descent , 2012, ASIACRYPT.
[8] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[9] Jean-Charles Faugère,et al. Comparison of XL and Gröbner basis algorithms over Finite Fields , 2004 .
[10] Rudolf Lide,et al. Finite fields , 1983 .
[11] Patrick Felke,et al. On the Affine Transformations of HFE-Cryptosystems and Systems with Branches , 2005, WCC.
[12] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[13] Hideki Imai,et al. Comparison Between XL and Gröbner Basis Algorithms , 2004, ASIACRYPT.
[14] Louis Goubin,et al. Asymmetric cryptography with S-Boxes , 1997, ICICS.
[15] John Baena,et al. Rank Analysis of Cubic Multivariate Cryptosystems , 2018, IACR Cryptol. ePrint Arch..
[16] Jacques Patarin,et al. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88 , 1995, CRYPTO.
[17] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[18] Daniel Smith-Tone,et al. Differential Properties of the HFE Cryptosystem , 2014, PQCrypto.
[19] K. Conrad,et al. Finite Fields , 2018, Series and Products in the Development of Mathematics.
[20] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[21] Jintai Ding,et al. Inverting HFE Systems Is Quasi-Polynomial for All Fields , 2011, CRYPTO.