MadMiner: Machine Learning-Based Inference for Particle Physics

[1]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2022, 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT).

[2]  Harri Hirvonsalo,et al.  REANA: A System for Reusable Research Data Analyses , 2019, EPJ Web of Conferences.

[3]  Sachin Dev,et al.  Geant4 - A Simulation Toolkit , 2019 .

[4]  Gilles Louppe,et al.  Identifying hadronically-decaying vector bosons and top quarks in ATLAS , 2019, Journal of Physics: Conference Series.

[5]  David S. Greenberg,et al.  Automatic Posterior Transformation for Likelihood-Free Inference , 2019, ICML.

[6]  Eduardo Rodrigues,et al.  The Scikit-HEP Project , 2019, EPJ Web of Conferences.

[7]  Gilles Louppe,et al.  Likelihood-free MCMC with Approximate Likelihood Ratios , 2019, ArXiv.

[8]  Benjamin Dan Wandelt,et al.  Nuisance hardened data compression for fast likelihood-free inference , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  Tom Charnock,et al.  Fast likelihood-free cosmology with neural density estimators and active learning , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  Nicola De Filippis,et al.  Higgs Physics at the HL-LHC and HE-LHC , 2019, 1902.00134.

[11]  Michael U. Gutmann,et al.  Dynamic Likelihood-free Inference via Ratio Estimation (DIRE) , 2018, ArXiv.

[12]  David Duvenaud,et al.  FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.

[13]  Gilles Louppe,et al.  Likelihood-free inference with an improved cross-entropy estimator , 2018, ArXiv.

[14]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[15]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[16]  Jakob H. Macke,et al.  Likelihood-free inference with emulator networks , 2018, AABI.

[17]  Iain Murray,et al.  Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows , 2018, AISTATS.

[18]  Gilles Louppe,et al.  Mining gold from implicit models to improve likelihood-free inference , 2018, Proceedings of the National Academy of Sciences.

[19]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[20]  Gilles Louppe,et al.  A guide to constraining effective field theories with machine learning , 2018, Physical Review D.

[21]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[22]  Sashank J. Reddi,et al.  On the Convergence of Adam and Beyond , 2018, ICLR.

[23]  F. Kling,et al.  Higgs boson pair production at future hadron colliders: From kinematics to dynamics , 2018, Physical Review D.

[24]  Benjamin D. Wandelt,et al.  Automatic physical inference with information maximising neural networks , 2018, 1802.03537.

[25]  Benjamin Dan Wandelt,et al.  Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology , 2018, 1801.01497.

[26]  P. Uwer,et al.  The Matrix Element Method at next-to-leading order QCD for hadronic collisions: single top-quark production at the LHC as an example application , 2017, 1712.04527.

[27]  J. Brehmer,et al.  Better Higgs-CP Tests Through Information Geometry , 2017, 1712.02350.

[28]  B. Wandelt,et al.  Generalized massive optimal data compression , 2017, 1712.00012.

[29]  Jakob H. Macke,et al.  Flexible statistical inference for mechanistic models of neural dynamics , 2017, NIPS.

[30]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[31]  J. Brehmer New Ideas for Effective Higgs Measurements , 2017 .

[32]  Alexander Vandenberg-Rodes,et al.  Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes , 2017, 1709.05681.

[33]  Gilles Louppe,et al.  Adversarial Variational Optimization of Non-Differentiable Simulators , 2017, BNAIC/BENELEARN.

[34]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[35]  C. Weniger,et al.  A fresh approach to forecasting in astroparticle physics and dark matter searches , 2017, 1704.05458.

[36]  Dustin Tran,et al.  Hierarchical Implicit Models and Likelihood-Free Variational Inference , 2017, NIPS.

[37]  Felix Kling,et al.  Maximizing the significance in Higgs boson pair analyses , 2017 .

[38]  K. Cranmer,et al.  Better Higgs boson measurements through information geometry , 2016, 1612.05261.

[39]  Gilles Louppe,et al.  Unifying generative models and exact likelihood-free inference with conditional bijections , 2016 .

[40]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[41]  Jukka Corander,et al.  Likelihood-Free Inference by Ratio Estimation , 2016, Bayesian Analysis.

[42]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[43]  Shakir Mohamed,et al.  Learning in Implicit Generative Models , 2016, ArXiv.

[44]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[45]  Fabio Maltoni,et al.  Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD , 2016, 1607.05330.

[46]  O. Mattelaer On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy , 2016, The European physical journal. C, Particles and fields.

[47]  S. Y. Shim,et al.  Gluon-gluon fusion , 2016, 1610.07922.

[48]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[49]  M. Xiao,et al.  Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques , 2016, 1606.03107.

[50]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[51]  Iain Murray,et al.  Fast $\epsilon$-free Inference of Simulation Models with Bayesian Conditional Density Estimation , 2016, 1605.06376.

[52]  Gilles Louppe,et al.  Carl: a Likelihood-free Inference Toolbox , 2016, J. Open Source Softw..

[53]  Hugo Larochelle,et al.  Neural Autoregressive Distribution Estimation , 2016, J. Mach. Learn. Res..

[54]  Karsten Koeneke,et al.  A morphing technique for signal modelling in a multidimensional space of coupling parameters , 2016 .

[55]  Frank D. Wood,et al.  Inference Networks for Sequential Monte Carlo in Graphical Models , 2016, ICML.

[56]  Pierre Baldi,et al.  Parameterized neural networks for high-energy physics , 2016, The European Physical Journal C.

[57]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[58]  C. Englert,et al.  Measuring the Higgs-bottom coupling in weak boson fusion , 2015, 1512.03429.

[59]  J. Huston,et al.  PDF4LHC recommendations for LHC Run II , 2015, 1510.03865.

[60]  P. Uwer,et al.  Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy , 2015, 1506.08798.

[61]  Gilles Louppe,et al.  Approximating Likelihood Ratios with Calibrated Discriminative Classifiers , 2015, 1506.02169.

[62]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[63]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[64]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[65]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[66]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[67]  D. Schouten,et al.  Accelerated matrix element method with parallel computing , 2014, Comput. Phys. Commun..

[68]  Jukka Corander,et al.  Likelihood-free inference via classification , 2014, Statistics and Computing.

[69]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[70]  Kyle Cranmer,et al.  Practical Statistics for the LHC , 2014, 1503.07622.

[71]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[72]  D. Soper,et al.  Finding physics signals with event deconstruction , 2014, 1402.1189.

[73]  Tilman Plehn,et al.  Where boosted significances come from , 2013, 1311.2591.

[74]  B. Fuks,et al.  Phenomenology of the Higgs effective Lagrangian via FeynRules , 2013, 1310.5150.

[75]  J. Favereau,et al.  DELPHES 3: a modular framework for fast simulation of a generic collider experiment , 2013, Journal of High Energy Physics.

[76]  J. Lykken,et al.  The Matrix Element Method: Past, Present, and Future , 2013, 1307.3546.

[77]  F. Maltoni,et al.  Unravelling tth via the matrix element method. , 2013, Physical review letters.

[78]  J. Campbell,et al.  Finding the Higgs boson in decays to $Z \gamma$ using the matrix element method at Next-to-Leading Order , 2013, 1301.7086.

[79]  D. J. Nott,et al.  Approximate Bayesian computation via regression density estimation , 2012, 1212.1479.

[80]  C. Englert,et al.  Extracting precise Higgs couplings by using the matrix element method , 2012, 1211.3011.

[81]  D. Soper,et al.  Finding top quarks with shower deconstruction , 2012, 1211.3140.

[82]  N. Tran,et al.  Spin and parity of a single-produced resonance at the LHC , 2012, 1208.4018.

[83]  R. Pittau,et al.  Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties , 2011, 1110.4738.

[84]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[85]  D. Soper,et al.  Finding physics signals with shower deconstruction , 2011, 1102.3480.

[86]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[87]  O. Mattelaer,et al.  The Matrix Element Method and QCD Radiation , 2010, 1010.2263.

[88]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[89]  N. Tran,et al.  Spin determination of single-produced resonances at hadron colliders , 2010, 1001.3396.

[90]  O. Mattelaer,et al.  MadWeight: automatic event reweighting with matrix elements , 2009 .

[91]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[92]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[93]  R. Rattazzi,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[94]  D. Collaboration A precision measurement of the mass of the top quark , 2004, Nature.

[95]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[96]  M. Diehl,et al.  Triple gauge couplings in polarised $e^-e^+ \rightarrow W^-W^+$ and their measurement using optimal observables , 2002, hep-ph/0209229.

[97]  Matt Dobbs,et al.  The HepMC C++ Monte Carlo event record for High Energy Physics ? ? Available via the following web-a , 2001 .

[98]  K. Cranmer,et al.  Kernel estimation in high-energy physics , 2000, hep-ex/0011057.

[99]  M. Diehl,et al.  Optimal observables for the measurement of three gauge boson couplings ine+e−→W+W− , 1994 .

[100]  M. Davier,et al.  The optimal method for the measurement of tau polarization , 1993 .

[101]  Soni,et al.  Analysis for magnetic moment and electric dipole moment form factors of the top quark via e+e--->tt-bar. , 1992, Physical review. D, Particles and fields.

[102]  K. Kondo Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. I. Method and Toy Models , 1988 .

[103]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[104]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[105]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[106]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[107]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[108]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[109]  G. Papamakarios,et al.  Fast ε-free Inference of Simulation Models with Bayesian Conditional Density Estimation , 2016, NIPS.

[110]  K. Cranmer,et al.  HistFactory: A tool for creating statistical models for use with RooFit and RooStats , 2012 .

[111]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .

[112]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[113]  Guido Van Rossum,et al.  Python Tutorial , 1999 .

[114]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[115]  H. Cramér Mathematical methods of statistics , 1946 .