Colorless Sulfur Bacteria

[1]  D. Sorokin Catenococcus thiocyclus gen. nov. sp. nov. – a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area , 1992 .

[2]  G J Olsen,et al.  Evolutionary relationships among sulfur- and iron-oxidizing eubacteria , 1992, Journal of bacteriology.

[3]  F. Boogerd,et al.  Floating Filters, a Novel Technique for Isolation and Enumeration of Fastidious, Acidophilic, Iron-Oxidizing, Autotrophic Bacteria , 1990, Applied and environmental microbiology.

[4]  C. Brierley,et al.  Microbial Mineral Recovery , 1990 .

[5]  D. Beer,et al.  Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments , 1990, Nature.

[6]  J. Deming,et al.  Vent fauna on whale remains , 1989, Nature.

[7]  H. Jannasch,et al.  Thermophilic Bacillus sp. that shows the denitrification phenotype of Pseudomonas aeruginosa , 1989, Applied and environmental microbiology.

[8]  E. Mikami,et al.  Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m , 1989, Applied and environmental microbiology.

[9]  C. Buisman Biotechnological sulphide removal with oxygen , 1989 .

[10]  E. Mikami,et al.  Removal of dimethyl sulfide, methyl mercaptan, and hydrogen sulfide by immobilized Thiobacillus thioparus TK-m , 1989 .

[11]  N. Revsbech,et al.  Photosynthesis and respiration of a diatom biofilm cultured in a new gradient growth chamber , 1989 .

[12]  D. Kelly,et al.  Oxidation of Carbon Disulphide as the Sole Source of Energy for the Autotrophic Growth of Thiobacillus thioparus Strain TK-m , 1988 .

[13]  D. Kelly,et al.  Mechanism of Oxidation of Dimethyl Disulphide by Thiobacillus thioparus Strain E6 , 1988 .

[14]  J. G. Kuenen,et al.  Simultaneous sulfide and acetate oxidation in a dentrifying fluidized bed. reactor. II : Measurements of activities and conversion , 1988 .

[15]  J. G. Kuenen,et al.  Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor. I: Start-up and reactor performance , 1988 .

[16]  K. Luyben,et al.  Feasibility of a Dutch process for microbial desulphurization of coal , 1988 .

[17]  J. P. Dijken,et al.  Carbon-Dioxide Fixation as the Initial Step in the Metabolism of Acetone by Thiosphaera-Pantotropha , 1988 .

[18]  E. Stackebrandt,et al.  Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” , 1988 .

[19]  D. Kelly,et al.  Isolation and Physiological Characterization of Autotrophic Sulphur Bacteria Oxidizing Dimethyl Disulphide as Sole Source of Energy , 1988 .

[20]  A. K. Tiller,et al.  Microbial corrosion-1 , 1988 .

[21]  E. Padan,et al.  Sulfur metabolism in Beggiatoa alba , 1987, Journal of bacteriology.

[22]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[23]  N. Pace,et al.  Phylogenetic Analysis of Certain Sulfide-Oxidizing and Related Morphologically Conspicuous Bacteria by 5S Ribosomal Ribonucleic Acid Sequences , 1987 .

[24]  G. Muyzer,et al.  A Combined Immunofluorescence-DNA-Fluorescence Staining Technique for Enumeration of Thiobacillus ferrooxidans in a Population of Acidophilic Bacteria , 1987, Applied and environmental microbiology.

[25]  K. Sublette,et al.  Oxidation of hydrogen sulfide by Thiobacillus denitrificans: Desulfurization of natural gas , 1987, Biotechnology and bioengineering.

[26]  E. Southward Gill Symbionts in Thyasirids and Other Bivalve Molluscs , 1986, Journal of the Marine Biological Association of the United Kingdom.

[27]  A. Southward,et al.  Chemoautotrophy in Bivalve Molluscs of the Genus Thyasira , 1986, Journal of the Marine Biological Association of the United Kingdom.

[28]  J. H. Tuttle,et al.  Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site , 1986 .

[29]  B. Jørgensen,et al.  Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. , 1986, FEMS microbiology ecology.

[30]  Luciferase‐dependent growth of cytochrome‐deficient Vibrio harveyi , 1986 .

[31]  G. Codd,et al.  Aspects of microbial metabolism and ecology , 1986 .

[32]  T. Kanagawa,et al.  Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus , 1986 .

[33]  N. Revsbech,et al.  Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data l , 1986 .

[34]  B. Jørgensen,et al.  Microelectrodes: Their Use in Microbial Ecology , 1986 .

[35]  D. Nelson,et al.  Thiomicrospira crunogena sp. nov., a Colorless, Sulfur-Oxidizing Bacterium from a Deep-Sea Hydrothermal Vent† , 1985 .

[36]  H. Jannasch Review Lecture - The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  N. Pace,et al.  Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences , 1985, Journal of bacteriology.

[38]  T. Sugio,et al.  Role of a Ferric Ion-Reducing System in Sulfur Oxidation of Thiobacillus ferrooxidans , 1985, Applied and environmental microbiology.

[39]  H. Gemerden,et al.  Microbial Interactions among Aerobic and Anaerobic Sulfur-Oxidizing Bacteria , 1985 .

[40]  D. M. Ward,et al.  Microelectrode Studies of Interstitial Water Chemistry and Photosynthetic Activity in a Hot Spring Microbial Mat , 1984, Applied and environmental microbiology.

[41]  I. Kawashima,et al.  Physiological Characteristics of the Facultatively Chemolithotrophic Thiobacillus Species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedius , 1984 .

[42]  M. Andreae,et al.  The marine chemistry of dimethylsulfide , 1984 .

[43]  Anton M. Breure,et al.  Anaerobic waste water treatment , 1984 .

[44]  A. P. Harrison The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. , 1984, Annual review of microbiology.

[45]  C. Cavanaugh Chemoautotrophic Bacteria In Marine Invertebrates From Sulfide-Rich Habitats: A New Symbiosis , 1983 .

[46]  J. Kuenen,et al.  Thiosphaera pantotropha gen. nov. sp. nov., a Facultatively Anaerobic, Facultatively Autotrophic Sulphur Bacterium , 1983 .

[47]  J. H. Tuttle,et al.  Microbial activities in the emitted hydrothermal waters of the Galápagos rift vents , 1983 .

[48]  C. Cavanaugh Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats , 1983, Nature.

[49]  W. Strohl,et al.  Beggiatoa, Thiothrix, and Thioploca. , 1983, Annual review of microbiology.

[50]  J. G. Kuenen,et al.  Microbiology of thiobacilli and other sulphur-oxidizing autotrophs, mixotrophs and heterotrophs. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  H. Kuraishi,et al.  Ubiquinone, Fatty acid and DNA Base Composition Determination as a Guide to the Taxonomy of the Genus Thiobacillus , 1982 .

[52]  Thingstad Tf,et al.  Mathematical description of competition between two and three bacterial species under dual substrate limitation in the chemostat: A comparison with experimental data , 1982 .

[53]  E. Ruby,et al.  Physiological characteristics of Thiomicrospira sp. Strain L-12 isolated from deep-sea hydrothermal vents , 1982, Journal of bacteriology.

[54]  B. Jørgensen Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  J. G. Kuenen,et al.  Heterolactic fermentation of intracellular polyglucose by the obligate chemolithotroph Thiobacillus neapolitanus under anaerobic conditions , 1981 .

[56]  J. Kuenen,et al.  Growth of Thiobacillus A2 under Alternating Growth Conditions in the Chemostat , 1981 .

[57]  J. Childress,et al.  Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats , 1981, Nature.

[58]  E. Ruby,et al.  Chemolithotrophic Sulfur-Oxidizing Bacteria from the Galapagos Rift Hydrothermal Vents , 1981, Applied and environmental microbiology.

[59]  J. Waterbury,et al.  Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts. , 1981, Science.

[60]  H. Felbeck Chemoautotrophic Potential of the Hydrothermal Vent Tube Worm, Riftia pachyptila Jones (Vestimentifera). , 1981, Science.

[61]  D C Nelson,et al.  Use of reduced sulfur compounds by Beggiatoa sp , 1981, Journal of bacteriology.

[62]  C. Friedrich,et al.  Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria , 1981 .

[63]  D. Brannan,et al.  Thermothrix thiopara: Growth and Metabolism of a Newly Isolated Thermophile Capable of Oxidizing Sulfur and Sulfur Compounds , 1980, Applied and environmental microbiology.

[64]  J. Kuenen,et al.  SELECTIVE ENRICHMENT OF FACULTATIVELY CHEMOLITHOTROPHIC THIOBACILLI AND RELATED ORGANISMS IN CONTINUOUS CULTURE , 1980 .

[65]  G. Arkesteyn Contribution of microorganisms to the oxidation of pyrite , 1980 .

[66]  D. Kelly,et al.  Competition in the Chemostat between an Obligately and a Facultatively Chemolithotrophic Thiobacillus , 1979 .

[67]  B. Jørgensen,et al.  Microbial Transformations of Sulfur-Compounds in a Stratified Lake (Solar Lake, Sinai) , 1979 .

[68]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[69]  H. Jannasch,et al.  Physiological and morphological observations on Thiovulum sp , 1978, Journal of bacteriology.

[70]  M. Mackintosh Nitrogen fixation by thiobacillus ferrooxidans , 1978 .

[71]  A. Matin,et al.  Organic nutrition of chemolithotrophic bacteria. , 1978, Annual review of microbiology.

[72]  J. Brierley,et al.  The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system , 1977 .

[73]  N. W. L. Roux,et al.  Thermophilic Thiobacillus-type Bacteria from Icelandic Thermal Areas , 1977 .

[74]  Anje Timmer-Ten Hoor Denitrificerende kleurloze zwavelbacteriën , 1977 .

[75]  S. J. Caldwell,et al.  Thermothrix thioparus gen. et sp. nov. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. , 1976, Canadian journal of microbiology.

[76]  T. D. Brock,et al.  Ferric iron reduction by sulfur- and iron-oxidizing bacteria , 1976, Applied and environmental microbiology.

[77]  A. T. Hoor A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. Nov. , 1975 .

[78]  D. Nicholas,et al.  Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. , 1973, Biochimica et biophysica acta.

[79]  T. D. Brock,et al.  Bacterial Origin of Sulfuric Acid in Geothermal Habitats , 1973, Science.

[80]  Y. Sorokin The Bacterial Population and the Processes of Hydrogen Sulphide Oxidation in the Black Sea , 1972 .

[81]  J. H. Tuttle,et al.  OCCURRENCE AND TYPES OF THIOBACILLUS-LIKE BACTERIA IN THE SEA1 , 1972 .

[82]  O. Tuovinen,et al.  Recommendation that the Names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel Be Recognized as Synonyms of Thiobacillus ferrooxidans Temple and Colmer , 1972 .

[83]  O. Tuovinen,et al.  Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. , 1972, Zeitschrift fur allgemeine Mikrobiologie.

[84]  B. F. Taylor,et al.  New Facultative Thiobacillus and a Reevaluation of the Heterotrophic Potential of Thiobacillus novellus , 1969, Journal of bacteriology.

[85]  D. White,et al.  Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. , 1969, Journal of general microbiology.

[86]  R. Wilkinson,et al.  Growth of Ferrobacillus ferrooxidans on Organic Matter , 1969, Journal of bacteriology.

[87]  A. J. Kluyver,et al.  Prospects for a Natural System of Classification of Bacteria. , 1936 .