GVis: A Scalable Visualization Framework for Genomic Data

This paper describes a framework we have developed for the visual analysis of large-scale phylogeny hierarchies populated with the genomic data of various organisms. This framework allows the user to quickly browse the phylogeny hierarchy of organisms from the highest level down to the level of an individual genome for the desired organism of interest. Based on this framework, the user can initiate gene-finding and gene-matching analyses and view the resulting annotated coding potential graphs in the same multi-scale visualization framework, permitting correlative analysis and further investigation. This paper introduces our framework and describes the data structures and algorithms that support it.

[1]  A. Goesmann,et al.  Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems biology. , 2003, Journal of biotechnology.

[2]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[3]  William Ribarsky,et al.  Real-Time Global Data Model for the Digital Earth , 2000 .

[4]  Michitaka Hirose,et al.  Visualization for genome function analysis using immersive projection technology , 2002, Proceedings IEEE Virtual Reality 2002.

[5]  William S. Havens,et al.  Contextual assistance in user interfaces to complex, time-critical systems: the intelligent zoom , 1994 .

[6]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[7]  Ann E. Loraine,et al.  Visualizing the genome: techniques for presenting human genome data and annotations , 2002, BMC Bioinformatics.

[8]  William Ribarsky,et al.  Real-time visualization of scalably large collections of heterogeneous objects , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[9]  Stuart K. Card,et al.  Visual information foraging in a focus + context visualization , 2001, CHI.

[10]  Mark Borodovsky,et al.  GENMARK: Parallel Gene Recognition for Both DNA Strands , 1993, Comput. Chem..

[11]  William Ribarsky,et al.  Third-person navigation of whole-planet terrain in a head-tracked stereoscopic environment , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[12]  William Ribarsky,et al.  Building the visual Earth , 2002, SPIE Defense + Commercial Sensing.

[13]  John Riedl,et al.  Visualization of biological sequence similarity search results , 1995, Proceedings Visualization '95.

[14]  Russell Schwartz,et al.  Visualization challenges for a new cyber-pharmaceutical computing paradigm , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[15]  L. Stein Creating a bioinformatics nation , 2002, Nature.

[16]  William Ribarsky,et al.  Virtual Geographic Information Systems , 2005, The Visualization Handbook.

[17]  David Small,et al.  Case study: A virtual environment for genomic data visualization , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Steven K. Feiner,et al.  Dynamic space management for user interfaces , 2000, UIST '00.

[19]  William Ribarsky,et al.  Real-time visualization of scalably large collections of heterogeneous objects (case study) , 1999, VIS '99.

[20]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[21]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.