A 1.2 V Low-Noise-Amplifier with Double Feedback for High Gain and Low Noise Figure

In this paper we present a balun low noise amplifier (LNA) in which the gain is boosted using a double feedback structure. The circuit is based in a conventional Balun LNA with noise and distortion cancellation. The LNA is based in two basic stages: common-gate (CG) and common-source (CS). We propose to replace the resistors by active loads, which have two inputs that will be used to provide the feedback (in the CG and CS stages). This proposed methodology will boost the gain and reduce the NF. Simulation results, with a 130 nm CMOS technology, show that the gain is 23.8 dB and the NF is less than 1.8 dB. The total power dissipation is only 5.3(since no extra blocks are required), leading to an FOM of 5.7 mW− 1 from a nominal 1.2 supply.

[1]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[2]  Krzysztof Iniewski,et al.  VLSI Circuits for Biomedical Applications , 2008 .

[3]  H.T. Friis,et al.  Noise Figures of Radio Receivers , 1944, Proceedings of the IRE.

[4]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[5]  Youngsik Kim,et al.  CMOS low noise amplifier design techniques using shunt resistive feedback , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[6]  Li Zhang,et al.  A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Hao Min,et al.  A wideband CMOS variable gain low noise amplifier based on single-to-differential stage for TV tuner applications , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[8]  José Silva-Martínez,et al.  A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner , 2007, IEEE Journal of Solid-State Circuits.

[9]  Luis B. Oliveira,et al.  MOSFET-only wideband LNA with noise cancelling and gain optimization , 2010, Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2010.

[10]  Michiel Steyaert,et al.  Cmos Wireless Transceiver Design , 2015 .

[11]  I. Bastos A MOSFET-only wideband LNA exploiting thermal noise canceling and gain optimization , 2010 .

[12]  Ramesh Harjani,et al.  High-Linearity CMOS RF Front-End Circuits , 2004 .

[13]  K. Yeo,et al.  Effect of technology scaling on the 1/f noise of deep submicron PMOS transistors , 2004 .

[14]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[15]  Pui-In Mak,et al.  Design of an ESD-Protected Ultra-Wideband LNA in Nanoscale CMOS for Full-Band Mobile TV Tuners , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  A. V. Der Ziel,et al.  Thermal Noise in Field-Effect Transistors , 1962, Proceedings of the IRE.

[17]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[18]  I. Bastos,et al.  Analysis and design of a MOSFET-only wideband balun LNA , 2010 .

[19]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[20]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[21]  A.A. Abidi,et al.  High-frequency noise measurements on FET's with small dimensions , 1986, IEEE Transactions on Electron Devices.

[22]  Ahmed Amer,et al.  A Low-Power Wideband CMOS LNA for WiMAX , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[23]  Luís Bica Oliveira,et al.  Balun LNA with continuously controllable gain and with noise and distortion cancellation , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[24]  F. Ellinger,et al.  Radio Frequency Integrated Circuits and Technologies , 2007 .

[25]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[26]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[27]  A. van der Ziel,et al.  Thermal Noise in Field-Effect Transistors , 1962 .

[28]  P. Wambacq,et al.  Low-power 5 GHz LNA and VCO in 90 nm RF CMOS , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[29]  Jorge R. Fernandes,et al.  Analysis and Design of Quadrature Oscillators , 2008 .

[30]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[31]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[32]  Donald K. Weaver,et al.  A Third Method of Generation and Detection of Single-Sideband Signals , 1956, Proceedings of the IRE.

[33]  L. Ratti,et al.  Noise Characterization of 130 nm and 90 nm CMOS Technologies for Analog Front-end Electronics , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[34]  L. C. Godara Introduction to "The heterodyne receiving system, and notes on the recent Arlington-Salem tests" , 1999 .