Sensitivity to change in laminar burning velocity and Markstein length resulting from variable hydrogen fraction in blast furnace gas for changing ambient conditions

[1]  T. O’Doherty,et al.  Laminar Burning Velocity and Markstein Length Characterisation of Compositionally Dynamic Blast Furnace Gas , 2012 .

[2]  F. Halter,et al.  Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures , 2011 .

[3]  Jaap de Vries,et al.  Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures , 2010 .

[4]  Yong Qi Liu,et al.  Simulation on the Combustion Property of Blast-Furnace Gas Engine by GT-POWER , 2010 .

[5]  F. Halter,et al.  Nonlinear effects of stretch on the flame front propagation , 2010 .

[6]  A. Konnov The effect of temperature on the adiabatic laminar burning velocities of CH4-air and H-2-air flames , 2010 .

[7]  W. Dahm,et al.  Extinction of premixed methane/air flames in microgravity by diluents: Effects of radiation and Lewis number , 2010 .

[8]  Christine Mounaïm-Rousselle,et al.  Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames , 2009 .

[9]  F. Halter,et al.  Measurement of laminar burning speeds and Markstein lengths using a novel methodology , 2009 .

[10]  C. Law,et al.  Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames , 2009 .

[11]  M. P. Burke,et al.  Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames , 2009 .

[12]  M. R. Ravi,et al.  Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition , 2008 .

[13]  F. Dryer,et al.  A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , 2007 .

[14]  Y. Ju,et al.  Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures , 2007 .

[15]  Philip John Bowen,et al.  Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures : An experimental study , 2006 .

[16]  L. Qiao,et al.  Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames , 2005 .

[17]  F. Egolfopoulos,et al.  An optimized kinetic model of H2/CO combustion , 2005 .

[18]  Stanek Wojciech,et al.  Identification of the influence of blast-furnance working parameters upon the supply and net calorific value of blast furnance gas , 2003 .

[19]  C. Paillard,et al.  Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method , 2003 .

[20]  Federico Bonzani,et al.  Operating Experience of Ansaldo V94.2 K Gas Turbine Fed by Steelworks Gas , 2002 .

[21]  C. Sung,et al.  Structure, aerodynamics, and geometry of premixed flamelets , 2000 .

[22]  M. Z. Haq,et al.  Laminar burning velocity and Markstein lengths of methane–air mixtures , 2000 .

[23]  D. Bradley,et al.  The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb , 1998 .

[24]  Martin J. Brown,et al.  Markstein lengths of CO/H2/air flames, using expanding spherical flames , 1996 .

[25]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[26]  Alan Williams,et al.  The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures , 1991 .

[27]  P. Ronney,et al.  A theoretical study of propagation and extinction of nonsteady spherical flame fronts , 1989 .

[28]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .

[29]  A. K. Biswas,et al.  Principles of blast furnace ironmaking: Theory and practice , 1981 .

[30]  G. H. Markstein,et al.  Experimental and Theoretical Studies of Flame-Front Stability , 1951 .