On the Merits of Using a 3D-FGAT Assimilation Scheme with an Outer Loop for Atmospheric Situations Governed by Transport

Abstract Three-dimensional variational data assimilation (3D-Var) with the first guess at appropriate time (FGAT) appears to be an attractive compromise between accuracy and overall computing time. It is computationally cheaper than four-dimensional (4D)-Var as the increment is not propagated back and forth in time by a model, yet the comparison between the model and the observations is still computed at the right observation time. An interesting feature of the 4D-Var is the iterative process known as the outer loop. This outer-loop approach can also be used in conjunction with 3D-FGAT. But it requires the application of the 3D-FGAT analysis increment at the beginning of the assimilation window. The pros and cons of using this unusual 3D-FGAT variant are illustrated in this paper on two applications focused on the transport, one of the main phenomena governing the atmospheric evolution. The first one is the one-dimensional advection of a passive tracer. By three representative situations, it shows the ben...

[1]  Jean-Noël Thépaut,et al.  Impact of the Digital Filter as a Weak Constraint in the Preoperational 4DVAR Assimilation System of Météo-France , 2001 .

[2]  Samuel Buis,et al.  PALM: a computational framework for assembling high-performance computing applications , 2006 .

[3]  C. Clerbaux,et al.  First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system , 2009 .

[4]  Henk Eskes,et al.  The Assimilation of Envisat data (ASSET) project , 2006 .

[5]  Yannick Trémolet,et al.  Diagnostics of linear and incremental approximations in 4D‐Var , 2004 .

[6]  David J. Lary,et al.  Lagrangian four‐dimensional variational data assimilation of chemical species , 1995 .

[7]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[8]  G. Ancellet,et al.  Observed and modelled “chemical weather” during ESCOMPTE , 2005 .

[9]  J. Attie,et al.  A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes , 2007 .

[10]  Monique Tanguay,et al.  Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada , 2007 .

[11]  D. Edwards,et al.  Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment , 2007 .

[12]  Hendrik Elbern,et al.  Variational data assimilation for tropospheric chemistry modeling , 1997 .

[13]  Daniel Cariolle,et al.  A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations , 2007 .

[14]  Olivier Pannekoucke,et al.  Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation , 2008 .

[15]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[17]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[18]  D. Cariolle,et al.  Vers une meilleure représentation de la distribution et de la variabilité de l'ozone atmosphérique par l'assimilation des données satellitaires , 2005 .

[19]  Monique Tanguay,et al.  Impact of the Different Components of 4DVAR on the Global Forecast System of the Meteorological Service of Canada , 2007 .

[20]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[21]  Luc Fillion,et al.  The impact of a digital filter finalization technique in a global data assimilation system , 1995 .

[22]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[23]  L. E. Amraoui,et al.  Assessment of the quality of the ozone measurements from the Odin/SMR instrument using data assimilation , 2007 .

[24]  Andrew C. Lorenc,et al.  Why does 4D‐Var beat 3D‐Var? , 2005 .

[25]  Y. Sasaki,et al.  An ObJective Analysis Based on the Variational Method , 1958 .

[26]  W. Thacker,et al.  Fitting dynamics to data , 1988 .

[27]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. Ii: Numerical Results , 2007 .

[28]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[29]  M. Juckes,et al.  The ASSET intercomparison of ozone analyses: method and first results , 2006 .

[30]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[31]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[32]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[33]  Olivier Talagrand,et al.  Assimilation of Observations, an Introduction (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[34]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[35]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[36]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .