Microbial activity in the marine deep biosphere: progress and prospects

The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org).

[1]  D. Stahl,et al.  High Abundance of Ammonia-Oxidizing Archaea in Coastal Waters, Determined Using a Modified DNA Extraction Method , 2010, Applied and Environmental Microbiology.

[2]  Andrew W. Dale,et al.  Global‐scale quantification of mineralization pathways in marine sediments: A reaction‐transport modeling approach , 2009 .

[3]  K. Rogers,et al.  Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy , 2003 .

[4]  Q. Jin,et al.  Predicting the rate of microbial respiration in geochemical environments , 2005 .

[5]  K. Rogers,et al.  Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy , 2006 .

[6]  Craig M. Bethke,et al.  A New Rate Law Describing Microbial Respiration , 2003, Applied and Environmental Microbiology.

[7]  P. Regnier,et al.  A knowledge‐based reactive transport approach for the simulation of biogeochemical dynamics in Earth systems , 2005 .

[8]  T. McCollom Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. , 2007, Astrobiology.

[9]  Gilbert Damy,et al.  Behaviour Of A Piston Corer From Accelerometers And New Insights On Quality Of The Recovery , 2007 .

[10]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[11]  J. Montoya,et al.  Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics , 2009 .

[12]  R. Stein,et al.  College Station TX (Integrated Ocean Drilling Program Management International, Inc.) , 2006 .

[13]  R. Parkes,et al.  The response of bacterial populations to sapropels in deep sediments of the Eastern Mediterranean (Site 969) , 1998 .

[14]  Andrey V. Plyasunov,et al.  Carbohydrates in thermophile metabolism: calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures , 2001 .

[15]  B. Engelen,et al.  Biogeography of Rhizobium radiobacter and distribution of associated temperate phages in deep subseafloor sediments , 2012, The ISME Journal.

[16]  Stefan Schouten,et al.  The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review , 2013 .

[17]  K. Rogers,et al.  Concentrations, distributions, and energy yields of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy , 2007 .

[18]  Peter R Girguis,et al.  Characterizing the distribution of methane sources and cycling in the deep sea via in situ stable isotope analysis. , 2013, Environmental science & technology.

[19]  T. Nunoura,et al.  Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). , 2009, FEMS microbiology ecology.

[20]  T. Treude,et al.  Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments , 2010 .

[21]  W. Reeburgh “Soft Spots” in the Global Methane Budget , 1996 .

[22]  C. Wheat,et al.  Preparation and injection of fluid tracers during IODP Expedition 327, eastern flank of Juan de Fuca Ridge , 2011 .

[23]  M. Fisk,et al.  Extent of the microbial biosphere in the oceanic crust , 2010 .

[24]  G. Mollenhauer,et al.  Origins of archaeal tetraether lipids in sediments : Insights from radiocarbon analysis , 2008 .

[25]  J. Cowen The microbial biosphere of sediment-buried oceanic basement. , 2004, Research in microbiology.

[26]  T. McCollom Geochemical constraints on primary productivity in submarine hydrothermal vent plumes , 2000 .

[27]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Q. Jin,et al.  Cellular energy conservation and the rate of microbial sulfate reduction , 2009 .

[29]  D. LaRowe,et al.  The energetics of metabolism in hydrothermal systems: Calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperatures and pressures , 2006 .

[30]  Takeshi Terada,et al.  Carbon and nitrogen assimilation in deep subseafloor microbial cells , 2011, Proceedings of the National Academy of Sciences.

[31]  Ronald D. Jones,et al.  Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. , 2004, FEMS microbiology ecology.

[32]  Bo Barker Jørgensen,et al.  Deep subseafloor microbial cells on physiological standby , 2011, Proceedings of the National Academy of Sciences.

[33]  W. G. Murrell The Biochemistry of the Bacterial Endospore , 1967 .

[34]  C. G. Wheat,et al.  Colonization of subsurface microbial observatories deployed in young ocean crust , 2009, The ISME Journal.

[35]  B. Cragg,et al.  Bacterial profiles in deep sediment layers from the Eastern Equatorial Pacific, Site 851 , 1995 .

[36]  Satoshi Nakagawa,et al.  Trends in Basalt and Sediment Core Contamination During IODP Expedition 301 , 2006 .

[37]  M. Middelboe,et al.  Viral abundance and activity in the deep sub-seafloor biosphere , 2011 .

[38]  S. Dowd,et al.  Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing , 2011, PloS one.

[39]  Robert A. Berner,et al.  Early Diagenesis: A Theoretical Approach , 1980 .

[40]  S. D’Hondt,et al.  Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226 , 2010 .

[41]  W. Holben,et al.  Monitoring Bacterial Transport by Stable Isotope Enrichment of Cells , 2000, Applied and Environmental Microbiology.

[42]  Antje Boetius,et al.  Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea , 2009 .

[43]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Amend,et al.  A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments , 2005 .

[45]  J. Amend,et al.  Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy , 2005 .

[46]  David C. Smith,et al.  Global distribution of microbial abundance and biomass in subseafloor sediment , 2012, Proceedings of the National Academy of Sciences.

[47]  A. Schippers,et al.  Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. , 2006, Environmental microbiology.

[48]  Rika Anderson,et al.  Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  K. Goodman,et al.  Deep bacterial biosphere in Pacific Ocean sediments , 1994, Nature.

[50]  Tori M. Hoehler,et al.  MODEL , STABLE ISOTOPE , AND RADIOTRACER CHARACTERIZATION OF ANAEROBIC METHANE OXIDATION IN GAS HYDRATE – BEARING SEDIMENTS OF THE BLAKE RIDGE , 1999 .

[51]  J. Fitton,et al.  Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots , 2011 .

[52]  David C. Smith,et al.  New cell extraction procedure applied to deep subsurface sediments , 2008 .

[53]  D. Gomez-Ibanez,et al.  A precision multi-sampler for deep-sea hydrothermal microbial mat studies , 2012 .

[54]  B. Roe,et al.  Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys , 2009, Applied and Environmental Microbiology.

[55]  T. Hoehler Biological energy requirements as quantitative boundary conditions for life in the subsurface , 2004 .

[56]  B. Engelen,et al.  Phylogenetic and Physiological Diversity of Cultured Deep-Biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin Sediments , 2007 .

[57]  Franciszek Hasiuk,et al.  Subseafloor sedimentary life in the South Pacific Gyre , 2009, Proceedings of the National Academy of Sciences.

[58]  R. Amann,et al.  Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink , 2006, Nature.

[59]  David C. Smith,et al.  Hydrogenase Activity in Deeply Buried Sediments of the Arctic and North Atlantic Oceans , 2009 .

[60]  L. Kerkhof,et al.  Characterization of Nitrifying, Denitrifying, and Overall Bacterial Communities in Permeable Marine Sediments of the Northeastern Gulf of Mexico , 2008, Applied and Environmental Microbiology.

[61]  C. G. Wheat,et al.  Design and deployment of borehole observatories and experiments during IODP Expedition 336, Mid-Atlantic Ridge flank at North Pond , 2012 .

[62]  R. Sanford,et al.  The thermodynamic ladder in geomicrobiology , 2011, American Journal of Science.

[63]  C. G. Wheat,et al.  Microbial Community in Black Rust Exposed to Hot Ridge Flank Crustal Fluids , 2006, Applied and Environmental Microbiology.

[64]  N. Pace,et al.  Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  B. Engelen,et al.  Induction of prophages from deep-subseafloor bacteria. , 2011, Environmental microbiology reports.

[66]  M. David,et al.  Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw , 2011, Nature.

[67]  D. Schrag,et al.  Rates of methanogenesis and methanotrophy in deep‐sea sediments , 2005 .

[68]  E. Shock,et al.  Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. , 2007, Astrobiology.

[69]  J. Fry,et al.  Bacterial biomass and activity in the deep sediment layers of the Japan Sea Hole 798B , 1992 .

[70]  B. Engelen,et al.  Supplementary material to : “ A laboratory experiment of intact polar lipid degradation in sandy sediments ” , 2011 .

[71]  Gerald R. Dickens,et al.  Distributions of Microbial Activities in Deep Subseafloor Sediments , 2004, Science.

[72]  C. G. Wheat,et al.  Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge , 2011 .

[73]  M. V. van Loosdrecht,et al.  A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth , 1993, Biotechnology and bioengineering.

[74]  David C. Smith,et al.  METHODS FOR QUANTIFYING POTENTIAL MICROBIAL CONTAMINATION DURING DEEP OCEAN CORING 1,2 , 2000 .

[75]  Virginia P. Edgcomb,et al.  Gene expression in the deep biosphere , 2013, Nature.

[76]  D. LaRowe,et al.  A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments , 2008, Geobiology.

[77]  W. Borowski,et al.  Microbial methane generation and gas transport in shallow sediments of an accretionary complex, southern hydrate ridge (ODP Leg 204), offshore Oregon, USA , 2006 .

[78]  R. Haggerty,et al.  Spatial Variability in In Situ Aerobic Respiration and Denitrification Rates in a Petroleum‐Contaminated Aquifer , 1998 .

[79]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[80]  J. Vanbriesen Evaluation of methods to predict bacterialyield using thermodynamics , 2004, Biodegradation.

[81]  G. Sellek,et al.  Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG) , 2009, Environmental microbiology.

[82]  W. Nelson,et al.  Prospects for the Study of Evolution in the Deep Biosphere , 2012, Front. Microbio..

[83]  Douglas E. LaRowe,et al.  Biomolecules in hydrothermal systems: Calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures , 2006 .

[84]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[85]  H. Helgeson,et al.  Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest , 1998 .

[86]  Scott Rutherford,et al.  Metabolic Activity of Subsurface Life in Deep-Sea Sediments , 2002, Science.

[87]  T. Ferdelman,et al.  Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow , 2012 .

[88]  Antje Boetius,et al.  The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps , 2004 .

[89]  J. Deming,et al.  Deep-sea smokers: windows to a subsurface biosphere? , 1993, Geochimica et cosmochimica acta.

[90]  E. Clercq Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.

[91]  Craig M. Bethke,et al.  The thermodynamics and kinetics of microbial metabolism , 2007, American Journal of Science.

[92]  Ronald D. Jones,et al.  Microbial ammonia oxidation and enhanced nitrogen cycling in the Endeavour hydrothermal plume , 2008 .

[93]  T. Ferdelman,et al.  Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations , 2013, Proceedings of the National Academy of Sciences.

[94]  P. Schultheiss,et al.  Technology for High-pressure Sampling and Analysis of Deep-sea Sediments, Associated Gas Hydrates, and Deep-biosphere Processes , 2009 .

[95]  H. O. Calvery The laboratory. , 1946, Medical research, a symposium ....

[96]  Q. Jin,et al.  Kinetics of electron transfer through the respiratory chain. , 2002, Biophysical journal.

[97]  A. Boetius,et al.  Feast and famine — microbial life in the deep-sea bed , 2007, Nature Reviews Microbiology.

[98]  J. Cowen,et al.  Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank , 2012, The ISME Journal.

[99]  S. Wood,et al.  Geochim. cosmochim. acta , 1990 .

[100]  B. Simoneit,et al.  22. METHANOGENIC ACTIVITY IN SEDIMENT FROM LEG 64, GULF OF CALIFORNIA , 2006 .

[101]  K. Rogers,et al.  Temporal changes in fluid chemistry and energy profiles in the vulcano island hydrothermal system. , 2007, Astrobiology.

[102]  K. Hinrichs,et al.  Significant contribution of Archaea to extant biomass in marine subsurface sediments , 2008, Nature.

[103]  Martin Rosner,et al.  First Investigation of the Microbiology of the Deepest Layer of Ocean Crust , 2010, PloS one.

[104]  Pierre Regnier,et al.  Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions , 2007 .

[105]  M. Sogin,et al.  Abundance and diversity of microbial life in ocean crust , 2008, Nature.

[106]  B. Jørgensen,et al.  Sulfur Cycling and Methane Oxidation , 2006 .

[107]  Heath J. Mills,et al.  Characterization of Microbial Population Shifts during Sample Storage , 2011, Front. Microbio..

[108]  B. Jørgensen,et al.  Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria , 2005, Nature.

[109]  K. Knittel,et al.  Anaerobic oxidation of methane in hypersaline cold seep sediments. , 2013, FEMS microbiology ecology.

[110]  Y. Fujita,et al.  Microbially-Mediated Subsurface Calcite Precipitation for Removal of Hazardous Divalent Cations , 2003 .

[111]  A. Schippers,et al.  Quantification of Microbial Communities in Forearc Sediment Basins off Sumatra , 2010 .

[112]  M. Böttcher,et al.  Microbial sulfate reduction in deep sediments of the Southwest Pacific (ODP Leg 181, Sites 1119–1125): evidence from stable sulfur isotope fractionation and pore water modeling , 2004 .

[113]  H. Johnson,et al.  Microbial life in ridge flank crustal fluids. , 2006, Environmental microbiology.

[114]  J. Istok,et al.  Single‐Well, “Push‐Pull” Test for In Situ Determination of Microbial Activities , 1997 .

[115]  C. G. Wheat,et al.  Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere , 2012 .

[116]  Bo Barker Jørgensen,et al.  Aerobic Microbial Respiration in 86-Million-Year-Old Deep-Sea Red Clay , 2012, Science.

[117]  S. Krastel,et al.  Sediment dynamics and geohazards off Uruguay and the de la Plata River region (northern Argentina and Uruguay) , 2011 .

[118]  Y. Prairie,et al.  Subsurface viruses and bacteria in Holocene/Late Pleistocene sediments of Saanich Inlet, BC: ODP Holes 1033B and 1034B, Leg 169S , 2001 .

[119]  J. Webster,et al.  Expedition 325 summary , 2011 .

[120]  E. Hornibrook,et al.  Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity , 2011 .

[121]  M. Schulte,et al.  Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems , 1995, Origins of Life and Evolution of the Biosphere.

[122]  Douglas E. LaRowe,et al.  Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins , 2006 .

[123]  J. Baross,et al.  The Deep Viriosphere: Assessing the Viral Impact on Microbial Community Dynamics in the Deep Subsurface , 2012 .

[124]  C. G. Wheat,et al.  In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow‐through device , 2011 .

[125]  A. Boetius,et al.  Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps , 2005 .

[126]  Douglas E. LaRowe,et al.  Calculation of the standard molal thermodynamic properties of crystalline peptides , 2012 .

[127]  J. Whelan,et al.  EVIDENCE OF MICROBIOLOGICAL ACTIVITY IN LEG 95 ( NEW JERSEY TRANSECT ) SEDIMENTS 1 , 2006 .

[128]  P. Girguis,et al.  Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids , 2011 .

[129]  E. Shock,et al.  Organic acids in hydrothermal solutions: standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. , 1995, American journal of science.

[130]  Noriaki Masui,et al.  Discriminative detection and enumeration of microbial life in marine subsurface sediments , 2009, The ISME Journal.

[131]  Katrina J. Edwards,et al.  Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production , 2003 .

[132]  R. Stepanauskas Single cell genomics: an individual look at microbes. , 2012, Current opinion in microbiology.

[133]  E. Shock,et al.  Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera , 2010, Geobiology.

[134]  J. Fry,et al.  Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin) , 1996 .

[135]  S. D’Hondt,et al.  Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment , 2009 .

[136]  Stefan Schouten,et al.  Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach , 2010 .

[137]  W. Orsi,et al.  Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces , 2013, PloS one.

[138]  T. Ferdelman,et al.  Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia) , 2000 .

[139]  Andrew J. Weightman,et al.  Deep sub-seafloor prokaryotes stimulated at interfaces over geological time , 2005, Nature.

[140]  A. Boetius,et al.  Effects of Temperature and Pressure on Sulfate Reduction and Anaerobic Oxidation of Methane in Hydrothermal Sediments of Guaymas Basin , 2004, Applied and Environmental Microbiology.

[141]  H. Helgeson,et al.  Calculation of the Standard Molal Thermodynamic Properties of Crystalline, Liquid, and Gas Organic Molecules at High Temperatures and Pressures , 1998 .

[142]  T. Phelps,et al.  Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin , 2004, Applied and Environmental Microbiology.

[143]  J. Kallmeyer,et al.  Characterization of microbial activity in pockmark fields of the SW-Barents Sea , 2012 .

[144]  B. Jørgensen,et al.  Leg 201 Synthesis: Controls on microbial communities in deeply buried sediments , 2006 .

[145]  Y. Fujita,et al.  Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. , 2008, Environmental science & technology.

[146]  R. Davis,et al.  Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii , 2011, The ISME Journal.

[147]  Fabien Kenig,et al.  Fluids from Aging Ocean Crust That Support Microbial Life , 2003, Science.

[148]  K. Edwards,et al.  Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. , 2005, Trends in microbiology.

[149]  B. Glazer,et al.  Redox Speciation and Distribution within Diverse Iron-dominated Microbial Habitats at Loihi Seamount , 2009 .

[150]  B. Cragg,et al.  BACTERIAL PROFILES IN DEEP SEDIMENT LAYERS FROM THE EASTERN EQUATORIAL PACIFIC OCEAN , SITE 851 1 , 2006 .

[151]  E. Shock,et al.  Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin , 2009, Extremophiles.

[152]  B. Jørgensen,et al.  A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements , 2004 .

[153]  Richard Camilli,et al.  Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry. , 2009, Environmental science & technology.

[154]  B. Jørgensen,et al.  Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment , 2012, Nature.

[155]  B. Jørgensen,et al.  Microbial life under extreme energy limitation , 2013, Nature Reviews Microbiology.

[156]  S. D’Hondt,et al.  Nature and Extent of the Deep Biosphere , 2012 .

[157]  A. Boetius,et al.  Microbial methane turnover at mud volcanoes of the Gulf of Cadiz , 2006 .

[158]  C. G. Wheat,et al.  Under the sea: microbial life in volcanic oceanic crust , 2011, Nature Reviews Microbiology.

[159]  Katrina J. Edwards,et al.  Microbial Ecology of the Dark Ocean above, at, and below the Seafloor , 2011, Microbiology and Molecular Reviews.

[160]  S. Joye,et al.  Summary of carbon, nitrogen, and iron leaching characteristics and fluorescence properties of materials considered for subseafloor observatory assembly , 2012 .

[161]  J. Amend,et al.  Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA , 2010 .

[162]  Walter S Borowski,et al.  8. MODEL, STABLE ISOTOPE, AND RADIOTRACER CHARACTERIZATION OF ANAEROBIC METHANE OXIDATION IN GAS HYDRATE-BEARING SEDIMENTS OF THE BLAKE RIDGE 1 , 2000 .

[163]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[164]  K. Hinrichs,et al.  Downsizing the Deep Biosphere , 2012, Science.

[165]  U. Tsunogai,et al.  Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation , 2000 .

[166]  D. Bartlett,et al.  Activities and distribution of methanogenic and methane‐oxidizing microbes in marine sediments from the Cascadia Margin , 2010, Geobiology.

[167]  M. Hannington,et al.  Shallow Drilling of Seafloor Hydrothermal Systems Using the BGS Rockdrill: Conical Seamount (New Ireland Fore-Arc) and PACMANUS (Eastern Manus Basin), Papua New Guinea , 2005 .

[168]  P. Price,et al.  Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[169]  M. Lilley,et al.  Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks , 2012 .

[170]  Andreas Schramm,et al.  Predominant archaea in marine sediments degrade detrital proteins , 2013, Nature.

[171]  C. G. Wheat,et al.  The Deep Subsurface Biosphere in Igneous Ocean Crust: Frontier Habitats for Microbiological Exploration , 2011, Front. Microbio..

[172]  Bo Barker Jørgensen,et al.  Anaerobic methane oxidation rates at the sulfate‐methane transition in marine sediments from Kattegat and Skagerrak (Denmark) , 1985 .

[173]  Uri Manor,et al.  Quantification of co-occurring reaction rates in deep subseafloor sediments , 2008 .

[174]  J. Amend,et al.  Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca ridge flank system , 2013 .

[175]  J. Wimpenny,et al.  Bacterial biomass and activity profiles within deep sediment layers , 1990 .

[176]  Fumio Inagaki,et al.  Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt , 2013, Science.

[177]  R. Stepanauskas,et al.  Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time , 2007, Proceedings of the National Academy of Sciences.

[178]  P. Meyers,et al.  Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes , 1997 .

[179]  Peter Berg,et al.  Interpretation of measured concentration profiles in sediment pore water , 1998 .

[180]  B. Jørgensen Shrinking majority of the deep biosphere , 2012, Proceedings of the National Academy of Sciences.

[181]  Richard L. Smith,et al.  Evidence for Sulfate-Reducing and Methane-Producing Microorganisms in Sediments from Sites 618, 619, and 622 , 1986 .

[182]  R. Harvey Microorganisms as tracers in groundwater injection and recovery experiments: a review. , 1997, FEMS microbiology reviews.

[183]  L. Wehrmann,et al.  Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323) , 2011 .

[184]  W. Inskeep,et al.  On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park , 2005 .

[185]  M. Hovland,et al.  The impact of fluid and gas venting on bacterial populations and processes in sediments from the Cascadia Margin accretionary system (sites 888-892) , 1995 .