Circuit Complexity, Proof Complexity, and Polynomial Identity Testing

We introduce a new and natural algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP≠VP). As a corollary, super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity.

[1]  V. Vinay,et al.  Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Neeraj Kayal,et al.  Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[3]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[4]  Ketan Mulmuley,et al.  Lower Bounds in a Parallel Model without Bit Operations , 1999, SIAM J. Comput..

[5]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[6]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[7]  Jan Krajícek,et al.  Exponential Lower Bounds for the Pigeonhole Principle , 1992, STOC.

[8]  Avi Wigderson,et al.  Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.

[9]  Walter Baur,et al.  The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..

[10]  Stephen A. Cook,et al.  The proof complexity of linear algebra , 2004, Ann. Pure Appl. Log..

[11]  Toniann Pitassi,et al.  Non-Automatizability of Bounded-Depth Frege Proofs , 2004, computational complexity.

[12]  Jan Krajícek,et al.  Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Mart́ın Sombra,et al.  A Sparse Effective Nullstellensatz 1 , 1997 .

[14]  A. Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond (Foundations and Trends(R) in Theoretical Computer Science) , 2011 .

[15]  Michael Stillman,et al.  A criterion for detectingm-regularity , 1987 .

[16]  A. Seidenberg Constructions in algebra , 1974 .

[17]  Miklós Ajtai,et al.  The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[18]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[19]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[20]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[21]  Joan Feigenbaum,et al.  Random-Self-Reducibility of Complete Sets , 1993, SIAM J. Comput..

[22]  Guillaume Malod,et al.  Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..

[23]  Ran Raz,et al.  On Interpolation and Automatization for Frege Systems , 2000, SIAM J. Comput..

[24]  Michael Eugene Stillman,et al.  On the Complexity of Computing Syzygies , 1988, J. Symb. Comput..

[25]  Sébastien Tavenas,et al.  Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..

[26]  Michael Stillman,et al.  A theorem on refining division orders by the reverse lexicographic order , 1987 .

[27]  Avi Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..

[28]  Joachim von zur Gathen,et al.  Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..

[29]  Par Patrice Philippon,et al.  A propos du texte de W. D. Brownawell: “Bounds for the degrees in the Nullstellensatz” , 1988 .

[30]  Shubhangi Saraf,et al.  On the Power of Homogeneous Depth 4 Arithmetic Circuits , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[31]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[32]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[33]  Iddo Tzameret,et al.  Short proofs for the determinant identities , 2012, STOC '12.

[34]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[35]  Toniann Pitassi,et al.  Towards lower bounds for bounded-depth Frege proofs with modular connectives , 1996, Proof Complexity and Feasible Arithmetics.

[36]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[37]  Seinosuke Toda,et al.  Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant , 1992 .

[38]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[39]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[40]  Rahul Santhanam,et al.  Stronger Lower Bounds and Randomness-Hardness Tradeoffs using Associated Algebraic Complexity Classes , 2011, Electron. Colloquium Comput. Complex..

[41]  Toniann Pitassi,et al.  Algebraic Propositional Proof Systems , 1996, Descriptive Complexity and Finite Models.

[42]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[43]  Pascal Koiran,et al.  Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..

[44]  Miles Reid,et al.  Undergraduate Commutative Algebra , 1995 .

[45]  Alexander A. Razborov,et al.  Natural Proofs , 2007 .

[46]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[47]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[48]  Neeraj Kayal,et al.  Lower Bounds for Depth-Three Arithmetic Circuits with small bottom fanin , 2016, computational complexity.

[49]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[50]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[51]  David Masser,et al.  Fields of large transcendence degree generated by values of elliptic functions , 1983 .

[52]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[53]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[54]  Ketan Mulmuley,et al.  The GCT program toward the P vs. NP problem , 2012, Commun. ACM.

[55]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[56]  R. Impagliazzo,et al.  Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[57]  Michael Alekhnovich,et al.  Space complexity in propositional calculus , 2000, STOC '00.

[58]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[59]  C SIAMJ. LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS , 1999 .

[60]  Dominic Welsh,et al.  COMPLETENESS AND REDUCTION IN ALGEBRAIC COMPLEXITY THEORY (Algorithms and Computation in Mathematics 7) By PETER BÜRGISSER: 168 pp., $44.50, ISBN 3-540-66752-0 (Springer, Berlin, 2000). , 2002 .

[61]  Peter Bürgisser Cook's versus Valiant's hypothesis , 2000, Theor. Comput. Sci..

[62]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[63]  Nutan Limaye,et al.  An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Formulas , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[64]  Miklós Ajtai The complexity of the Pigeonhole Principle , 1994, Comb..

[65]  Teresa Krick,et al.  Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.

[66]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[67]  Ran Raz,et al.  The Strength of Multilinear Proofs , 2008, computational complexity.

[68]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[69]  Alexander A. Razborov,et al.  Natural Proofs , 1997, J. Comput. Syst. Sci..

[70]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[71]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[72]  Jürgen Herzog,et al.  Grobner Bases in Commutative Algebra , 2011 .

[73]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.