Circuit Complexity, Proof Complexity, and Polynomial Identity Testing
暂无分享,去创建一个
[1] V. Vinay,et al. Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[2] Neeraj Kayal,et al. Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[3] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[4] Ketan Mulmuley,et al. Lower Bounds in a Parallel Model without Bit Operations , 1999, SIAM J. Comput..
[5] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[6] Grete Hermann,et al. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .
[7] Jan Krajícek,et al. Exponential Lower Bounds for the Pigeonhole Principle , 1992, STOC.
[8] Avi Wigderson,et al. Algebrization: A New Barrier in Complexity Theory , 2009, TOCT.
[9] Walter Baur,et al. The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..
[10] Stephen A. Cook,et al. The proof complexity of linear algebra , 2004, Ann. Pure Appl. Log..
[11] Toniann Pitassi,et al. Non-Automatizability of Bounded-Depth Frege Proofs , 2004, computational complexity.
[12] Jan Krajícek,et al. Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[13] Mart́ın Sombra,et al. A Sparse Effective Nullstellensatz 1 , 1997 .
[14] A. Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond (Foundations and Trends(R) in Theoretical Computer Science) , 2011 .
[15] Michael Stillman,et al. A criterion for detectingm-regularity , 1987 .
[16] A. Seidenberg. Constructions in algebra , 1974 .
[17] Miklós Ajtai,et al. The complexity of the Pigeonhole Principle , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[18] John Gill,et al. Relativizations of the P =? NP Question , 1975, SIAM J. Comput..
[19] R. Solovay,et al. Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .
[20] Erich Kaltofen,et al. Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.
[21] Joan Feigenbaum,et al. Random-Self-Reducibility of Complete Sets , 1993, SIAM J. Comput..
[22] Guillaume Malod,et al. Characterizing Valiant's algebraic complexity classes , 2008, J. Complex..
[23] Ran Raz,et al. On Interpolation and Automatization for Frege Systems , 2000, SIAM J. Comput..
[24] Michael Eugene Stillman,et al. On the Complexity of Computing Syzygies , 1988, J. Symb. Comput..
[25] Sébastien Tavenas,et al. Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..
[26] Michael Stillman,et al. A theorem on refining division orders by the reverse lexicographic order , 1987 .
[27] Avi Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..
[28] Joachim von zur Gathen,et al. Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..
[29] Par Patrice Philippon,et al. A propos du texte de W. D. Brownawell: “Bounds for the degrees in the Nullstellensatz” , 1988 .
[30] Shubhangi Saraf,et al. On the Power of Homogeneous Depth 4 Arithmetic Circuits , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[31] Leslie G. Valiant,et al. Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..
[32] S. D. Chatterji. Proceedings of the International Congress of Mathematicians , 1995 .
[33] Iddo Tzameret,et al. Short proofs for the determinant identities , 2012, STOC '12.
[34] Ernst W. Mayr,et al. Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.
[35] Toniann Pitassi,et al. Towards lower bounds for bounded-depth Frege proofs with modular connectives , 1996, Proof Complexity and Feasible Arithmetics.
[36] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .
[37] Seinosuke Toda,et al. Classes of Arithmetic Circuits Capturing the Complexity of Computing the Determinant , 1992 .
[38] Russell Impagliazzo,et al. Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.
[39] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[40] Rahul Santhanam,et al. Stronger Lower Bounds and Randomness-Hardness Tradeoffs using Associated Algebraic Complexity Classes , 2011, Electron. Colloquium Comput. Complex..
[41] Toniann Pitassi,et al. Algebraic Propositional Proof Systems , 1996, Descriptive Complexity and Finite Models.
[42] Peter Bürgisser,et al. Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.
[43] Pascal Koiran,et al. Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..
[44] Miles Reid,et al. Undergraduate Commutative Algebra , 1995 .
[45] Alexander A. Razborov,et al. Natural Proofs , 2007 .
[46] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[47] Amir Yehudayoff,et al. Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..
[48] Neeraj Kayal,et al. Lower Bounds for Depth-Three Arithmetic Circuits with small bottom fanin , 2016, computational complexity.
[49] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[50] Russell Impagliazzo,et al. Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.
[51] David Masser,et al. Fields of large transcendence degree generated by values of elliptic functions , 1983 .
[52] Leslie G. Valiant,et al. NP is as easy as detecting unique solutions , 1985, STOC '85.
[53] Michael Ben-Or,et al. A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.
[54] Ketan Mulmuley,et al. The GCT program toward the P vs. NP problem , 2012, Commun. ACM.
[55] D. Mumford. Algebraic Geometry I: Complex Projective Varieties , 1981 .
[56] R. Impagliazzo,et al. Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[57] Michael Alekhnovich,et al. Space complexity in propositional calculus , 2000, STOC '00.
[58] Jan Krajícek,et al. Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.
[59] C SIAMJ.. LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS , 1999 .
[60] Dominic Welsh,et al. COMPLETENESS AND REDUCTION IN ALGEBRAIC COMPLEXITY THEORY (Algorithms and Computation in Mathematics 7) By PETER BÜRGISSER: 168 pp., $44.50, ISBN 3-540-66752-0 (Springer, Berlin, 2000). , 2002 .
[61] Peter Bürgisser. Cook's versus Valiant's hypothesis , 2000, Theor. Comput. Sci..
[62] Pascal Koiran. Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..
[63] Nutan Limaye,et al. An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Formulas , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[64] Miklós Ajtai. The complexity of the Pigeonhole Principle , 1994, Comb..
[65] Teresa Krick,et al. Sharp estimates for the arithmetic Nullstellensatz , 1999, math/9911094.
[66] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[67] Ran Raz,et al. The Strength of Multilinear Proofs , 2008, computational complexity.
[68] Craig Huneke,et al. Commutative Algebra I , 2012 .
[69] Alexander A. Razborov,et al. Natural Proofs , 1997, J. Comput. Syst. Sci..
[70] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[71] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[72] Jürgen Herzog,et al. Grobner Bases in Commutative Algebra , 2011 .
[73] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.