Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

[1]  X. Guo,et al.  Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. , 2015, Bone.

[2]  L. Le,et al.  The analysis and compensation of cortical thickness effect on ultrasonic backscatter signals in cancellous bone , 2014 .

[3]  J Töyräs,et al.  Ultrasound backscatter measurements of intact human proximal femurs--relationships of ultrasound parameters with tissue structure and mineral density. , 2014, Bone.

[4]  D. Ta,et al.  Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in Calcaneus in vivo for the ultrasonic evaluation of osteoporosis. , 2014, Ultrasound in medicine & biology.

[5]  M. Matsukawa,et al.  An experimental study on the ultrasonic wave propagation in cancellous bone: waveform changes during propagation. , 2013, The Journal of the Acoustical Society of America.

[6]  A. Hosokawa Numerical investigation of reflection properties of fast and slow longitudinal waves in cancellous bone [Correspondence] , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[7]  A. Wilson,et al.  A backscatter difference technique for ultrasonic bone assessment. , 2012, The Journal of the Acoustical Society of America.

[8]  K. Lee Correlations of group velocity, phase velocity, and dispersion with bone density in bovine trabecular bone. , 2011, The Journal of the Acoustical Society of America.

[9]  U. P. S. T. Force,et al.  Screening for Osteoporosis: U.S. Preventive Services Task Force Recommendation Statement , 2011, Annals of Internal Medicine.

[10]  B. Hoffmeister Frequency dependence of apparent ultrasonic backscatter from human cancellous bone , 2011, Physics in medicine and biology.

[11]  Juha Töyräs,et al.  Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone. , 2009, Ultrasound in medicine & biology.

[12]  R. Luben,et al.  The effect of including quantitative heel ultrasound in models for estimation of 10-year absolute risk of fracture. , 2009, Bone.

[13]  T. Keaveny,et al.  The influence of boundary conditions and loading mode on high-resolution finite element-computed trabecular tissue properties. , 2009, Bone.

[14]  T. Keaveny,et al.  Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. , 2009, Bone.

[15]  Keith A Wear,et al.  The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms. , 2009, The Journal of the Acoustical Society of America.

[16]  A Lhémery,et al.  Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. , 2008, The Journal of the Acoustical Society of America.

[17]  Weiqi Wang,et al.  Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. , 2008, The Journal of the Acoustical Society of America.

[18]  Hiroshi Hosoi,et al.  Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone. , 2008, Ultrasonics.

[19]  Keith A Wear,et al.  Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone. , 2008, The Journal of the Acoustical Society of America.

[20]  K. Wear,et al.  Ultrasonic scattering from cancellous bone: A review , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  P. Laugier,et al.  Instrumentation for in vivo ultrasonic characterization of bone strength , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  P. Laugier,et al.  Application of Biot's theory to ultrasonic characterization of human cancellous bones: determination of structural, material, and mechanical properties. , 2008, The Journal of the Acoustical Society of America.

[23]  P. Papadopoulos,et al.  Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. , 2006, Bone.

[24]  Juha Töyräs,et al.  Ultrasonic characterization of human trabecular bone microstructure , 2006, Physics in medicine and biology.

[25]  F. Padilla,et al.  Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Pascal Laugier,et al.  Estimation of Trabecular Thickness Using Ultrasonic Backcatter , 2006, Ultrasonic imaging.

[27]  Wei Lin,et al.  The influence of cortical end-plate on broadband ultrasound attenuation measurements at the human calcaneus using scanning confocal ultrasound. , 2005, The Journal of the Acoustical Society of America.

[28]  E. Madsen,et al.  Interlaboratory Comparison of Ultrasonic Backscatter Coefficient Measurements From 2 to 9 MHz , 2005, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[29]  Keith A Wear,et al.  The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms. , 2005, The Journal of the Acoustical Society of America.

[30]  I. Kiviranta,et al.  Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range , 2005, Physics in medicine and biology.

[31]  F. Peyrin,et al.  Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography. , 2005, Bone.

[32]  Mark F. Adams,et al.  Ultrascalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a Billion Degrees of Freedom , 2004, Proceedings of the ACM/IEEE SC2004 Conference.

[33]  D. Hans,et al.  Does follow-up duration influence the ultrasound and DXA prediction of hip fracture? The EPIDOS prospective study. , 2004, Bone.

[34]  W. Lauriks,et al.  Ultrasonic wave propagation in human cancellous bone: application of Biot theory. , 2004, The Journal of the Acoustical Society of America.

[35]  A. Laib,et al.  The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  F. Peyrin,et al.  Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. , 2003, The Journal of the Acoustical Society of America.

[37]  J. Rho,et al.  Effect of marrow on the high frequency ultrasonic properties of cancellous bone. , 2002, Physics in medicine and biology.

[38]  M. Kaczmarek,et al.  Short ultrasonic waves in cancellous bone. , 2002, Ultrasonics.

[39]  M. Bouxsein,et al.  Bone marrow influences quantitative ultrasound measurements in human cancellous bone. , 2002, Ultrasound in medicine & biology.

[40]  K. Wear,et al.  Relationships among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women. , 2001, The Journal of the Acoustical Society of America.

[41]  R Porcher,et al.  Ultrasonic Backscatter and Transmission Parameters at the Os Calcis in Postmenopausal Osteoporosis , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[42]  Jia Lu,et al.  On the formulation and numerical solution of problems in anisotropic finite plasticity , 2001 .

[43]  T. Keaveny,et al.  Dependence of yield strain of human trabecular bone on anatomic site. , 2001, Journal of biomechanics.

[44]  J. Rho,et al.  Low-megahertz ultrasonic properties of bovine cancellous bone. , 2000, Bone.

[45]  K. Wear,et al.  Measurements of phase velocity and group velocity in human calcaneus. , 2000, Ultrasound in medicine & biology.

[46]  K. Wear Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. , 1999, The Journal of the Acoustical Society of America.

[47]  P. Rüegsegger,et al.  The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. , 1999, Bone.

[48]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[49]  Jia Lu,et al.  A general framework for the numerical solution of problems in finite elasto-plasticity , 1998 .

[50]  B. Garra,et al.  Assessment of bone density using ultrasonic backscatter. , 1998, Ultrasound in medicine & biology.

[51]  A. Hosokawa,et al.  Acoustic anisotropy in bovine cancellous bone. , 1998, The Journal of the Acoustical Society of America.

[52]  C F Njeh,et al.  The effect of cortical endplates on ultrasound velocity through the calcaneus: an in vitro study. , 1997, The British journal of radiology.

[53]  P. Rüegsegger,et al.  A new method for the model‐independent assessment of thickness in three‐dimensional images , 1997 .

[54]  R. Strelitzki On the measurement of the velocity of ultrasound in the os calcis using short pulses , 1996 .

[55]  G Van der Perre,et al.  A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone. , 1996, Physics in medicine and biology.

[56]  G. Breart,et al.  Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study , 1996, The Lancet.

[57]  J. Currey,et al.  Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. , 1996, Bone.

[58]  R. S. Siffert,et al.  Influence of marrow on ultrasonic velocity and attenuation in bovine trabecular bone , 1996, Calcified Tissue International.

[59]  W C Hayes,et al.  Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. , 1994, Journal of biomechanics.

[60]  L. X. Yao,et al.  Backscatter Coefficient Measurements Using a Reference Phantom to Extract Depth-Dependent Instrumentation Factors , 1990, Ultrasonic imaging.

[61]  C. Langton,et al.  The measurement of broadband ultrasonic attenuation in cancellous bone. , 1984, Engineering in medicine.

[62]  E. Jaynes,et al.  Kramers–Kronig relationship between ultrasonic attenuation and phase velocity , 1981 .

[63]  P. M. Naghdi,et al.  SOME REMARKS ON ELASTIC-PLASTIC DEFORMATION AT FINITE STRAIN , 1971 .

[64]  Robert W. Kennard,et al.  A Note on the Cp Statistic , 1971 .

[65]  Robert W. Kennard,et al.  A Note on the Cp Statistic , 1971 .

[66]  J. Goodman Introduction to Fourier optics , 1969 .

[67]  P. Hoel,et al.  Introduction to Mathematical Statistics. , 1947 .

[68]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[69]  M. Choi,et al.  Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz , 2012 .

[70]  K. Il Lee,et al.  Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz. , 2012, The Journal of the Acoustical Society of America.

[71]  A. Moayyeri,et al.  Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis , 2011, Osteoporosis International.

[72]  Pascal Laugier,et al.  Quantitative Ultrasound Instrumentation for Bone In Vivo Characterization , 2011 .

[73]  Anne-Marie Schott,et al.  Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. , 2008, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[74]  R. Ramponi,et al.  Clinical applications , 2007, Lasers in Medical Science.

[75]  F Peyrin,et al.  Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure. , 2002, Bone.

[76]  J. Rho,et al.  Effect of Collagen and Mineral Content on the High-Frequency Ultrasonic Properties of Human Cancellous Bone , 2002, Osteoporosis International.

[77]  K. Wear,et al.  The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[78]  R. Gunst Applied Regression Analysis , 1999, Technometrics.

[79]  P. Laugier,et al.  Velocity dispersion of acoustic waves in cancellous bone , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  A. Hosokawa,et al.  Ultrasonic wave propagation in bovine cancellous bone. , 1997, The Journal of the Acoustical Society of America.

[81]  D P Fyhrie,et al.  Failure mechanisms in human vertebral cancellous bone. , 1994, Bone.

[82]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .