TIME‐CHANGED ORNSTEIN–UHLENBECK PROCESSES AND THEIR APPLICATIONS IN COMMODITY DERIVATIVE MODELS

This paper studies subordinate Ornstein-Uhlenbeck (OU) processes, i.e., OU diffusions time changed by L\'{e}vy subordinators. We construct their sample path decomposition, show that they possess mean-reverting jumps, study their equivalent measure transformations, and the spectral representation of their transition semigroups in terms of Hermite expansions. As an application, we propose a new class of commodity models with mean-reverting jumps based on subordinate OU process. Further time changing by the integral of a CIR process plus a deterministic function of time, we induce stochastic volatility and time inhomogeneity, such as seasonality, in the models. We obtain analytical solutions for commodity futures options in terms of Hermite expansions. The models are consistent with the initial futures curve, exhibit Samuelson's maturity effect, and are flexible enough to capture a variety of implied volatility smile patterns observed in commodities futures options.

[1]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[2]  Jimmy E. Hilliard,et al.  Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot , 1998, Journal of Financial and Quantitative Analysis.

[3]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[4]  H. Geman Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy , 2005 .

[5]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[6]  V. Linetsky Spectral Methods in Derivatives Pricing , 2007 .

[7]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[8]  P. Collin‐Dufresne,et al.  Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates , 2005 .

[9]  R. Pindyck The Dynamics of Commodity Spot and Futures Markets: A Primer , 2001 .

[10]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[11]  V. Linetsky,et al.  Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates , 2004 .

[12]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[13]  C. Albanese UNIFYING THE THREE VOLATILITY MODELS , 2004 .

[14]  Leif B. G. Andersen Markov Models for Commodity Futures: Theory and Practice , 2008 .

[15]  S. Bochner Diffusion Equation and Stochastic Processes. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Erhan Çinlar,et al.  Representation of Semimartingale Markov Processes in Terms of Wiener Processes and Poisson Random Measures , 1981 .

[17]  S. Albeverio,et al.  Subordination of symmetric quasi -regular Dirichlet forms , 2005 .

[18]  V. Nollau,et al.  The Symbol of a Markov Semimartingale , 2009 .

[19]  J. Kallsen,et al.  Time Change Representation of Stochastic Integrals , 2002 .

[20]  Jimmy E. Hilliard,et al.  Jump Processes in Commodity Futures Prices and Options Pricing , 1999 .

[21]  H. McKean Elementary solutions for certain parabolic partial differential equations , 1956 .

[22]  Rafael Mendoza-Arriaga,et al.  Pricing equity default swaps under the jump-to-default extended CEV model , 2011, Finance Stochastics.

[23]  Les Clewlow,et al.  Valuing Energy Options in a One Factor Model Fitted to Forward Prices , 1999 .

[24]  H. Ôkura Recurrence and transience criteria for subordinated symmetric Markov processes , 2002 .

[25]  A. Eydeland Energy and Power Risk Management , 2002 .

[26]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[27]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[28]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[29]  P. Carr,et al.  TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING , 2010 .

[30]  S. Albeverio,et al.  Infinite-dimensional stochastic differential equations obtained by subordination and related Dirichlet forms , 2003 .

[31]  S. Thangavelu Hermite and Laguerre semigroups some recent developments , 2006 .

[32]  H. Bessembinder,et al.  Mean Reversion in Equilibrium Asset Prices: Evidence from the Futures Term Structure , 1995 .

[33]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[34]  S. Levendorskii,et al.  The Eigenfunction Expansion Method in Multi-Factor Quadratic Term Structure Models , 2006 .

[35]  Pricing of Power Derivatives , 2014 .

[36]  E. K. Wong The Construction of a Class of Stationary Markoff Processes , 1964 .

[37]  D. Brigo,et al.  Interest Rate Models , 2001 .

[38]  Marc Yor,et al.  Time Changes for Lévy Processes , 2001 .

[39]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[40]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[41]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[42]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[43]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[44]  Jan Kallsen,et al.  A Didactic Note on Affine Stochastic Volatility Models , 2006 .

[45]  J. Crosby A multi-factor jump-diffusion model for commodities , 2008 .

[46]  J. Geluk Π-regular variation , 1981 .

[47]  Fred Espen Benth,et al.  THE NORMAL INVERSE GAUSSIAN DISTRIBUTION AND SPOT PRICE MODELLING IN ENERGY MARKETS , 2004 .

[48]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[49]  Alain Galli,et al.  Filtering in Finance , 2003 .

[50]  R. Song,et al.  Two‐sided Green function estimates for killed subordinate Brownian motions , 2010, 1007.5455.

[51]  S. Deng,et al.  Stochastic Models of Energy Commodity Prices and Their Applications : Mean-reversion with Jumps and Spikes , 1998 .

[52]  Characterization of Markov semigroups on ℝ Associated to Some Families of Orthogonal Polynomials , 2003 .

[53]  Alan G. White,et al.  One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities , 1993, Journal of Financial and Quantitative Analysis.

[54]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[55]  John P. Boyd,et al.  Asymptotic coefficients of hermite function series , 1984 .

[56]  H. Geman,et al.  Understanding the Fine Structure of Electricity Prices , 2004 .

[57]  Sergei Levendorskii,et al.  THE EIGENFUNCTION EXPANSION METHOD IN MULTI‐FACTOR QUADRATIC TERM STRUCTURE MODELS , 2007 .

[58]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[59]  Hélyette Geman,et al.  Risk management in commodity markets : from shipping to agriculturals and energy , 2009 .

[60]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[61]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[62]  Vadim Linetsky,et al.  Computing exponential moments of the discrete maximum of a Lévy process and lookback options , 2008, Finance Stochastics.

[63]  R. Wolpert Lévy Processes , 2000 .

[64]  R. Song,et al.  Potential Theory of Subordinate Brownian Motion , 2009 .

[65]  P. Kalev,et al.  A test of the Samuelson Hypothesis using realized range , 2008 .

[66]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[67]  V. Linetsky THE SPECTRAL DECOMPOSITION OF THE OPTION VALUE , 2004 .

[68]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[69]  Xuemin (Sterling) Yan Valuation of commodity derivatives in a new multi-factor model , 2002 .

[70]  N. Jacob,et al.  Pseudo Differential Operators and Markov Processes: Volume I: Fourier Analysis and Semigroups , 2001 .