The solar dynamo

The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field.

[1]  H. W. Newton,et al.  The Sun's Rotation Derived from Sunspots 1934–1944 and Additional Results , 1951 .

[2]  R. Howard,et al.  Torsional waves on the Sun and the activity cycle , 1982 .

[3]  R. Dicke The 5-min oscillations of the Sun are incompatible with a rapidly-rotating core , 1982, Nature.

[4]  G. Rüdiger Reynolds stresses and differential rotation II. Mean-field models , 1982 .

[5]  H. Yoshimura Solar cycle Lorentz force waves and the torsional oscillations of the sun , 1981 .

[6]  Fausto Cattaneo,et al.  Periodic and aperiodic dynamo waves , 1984 .

[7]  I. Tuominen,et al.  Oscillatory motions in the sun corresponding to the solar cycle , 1984 .

[8]  R. Leighton A Magneto-Kinematic Model of the Solar Cycle , 1969 .

[9]  H. Spruit,et al.  On the dynamics of stellar convection zones - The effect of rotation on the turbulent viscosity and conductivity , 1979 .

[10]  M. Steenbeck,et al.  Zur Dynamotheorie stellarer und planetarer Magnetfelder I. Berechnung sonnenähnlicher Wechselfeldgeneratoren , 1969 .

[11]  N. Kleeorin,et al.  Mean‐field dynamo with cubic non‐linearity , 1984 .

[12]  J. Harvey,et al.  Spectroscopic determinations of solar rotation , 1970 .

[13]  M. Stix Theory of the solar cycle , 1981 .

[14]  H. Yoshimura The solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation , 1979 .

[15]  H. W. Babcock The Topology of the Sun's Magnetic Field and the 22-YEAR Cycle. , 1961 .

[16]  J. Wilcox,et al.  A View of Solar Magnetic Fields, the Solar Corona, and the Solar Wind in Three Dimensions , 1978 .

[17]  H. Yoshimura Solar-cycle dynamo wave propagation , 1975 .

[18]  D. Sokoloff,et al.  A dynamo theorem , 1984 .

[19]  C. Zwaan On the appearance of magnetic flux in the solar photosphere , 1978 .

[20]  John A. Eddy,et al.  The Maunder Minimum , 1976, Science.

[21]  Philip R. Goode,et al.  Preliminary determination of the sun's gravitational quadrupole moment from rotational splitting of global oscillations and its relevance to tests of general relativity , 1982 .

[22]  B. Labonte,et al.  The sun is observed to be a torsional oscillator with a period of 11 years , 1980 .

[23]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[24]  A. Monin,et al.  Statistical hydromechanics of the solar differential rotation. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Altschuler,et al.  The large-scale solar magnetic field , 1974 .

[26]  R. Hide Cosmical magnetic fields , 1978, Nature.

[27]  本蔵 義守,et al.  F. Krause and K. -H. Radler: Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford and New York, 271ページ, 21.5×15.5cm, 10,800円. , 1982 .

[28]  A. Ruzmaikin,et al.  Three-dimensional model for generation of the mean solar magnetic field , 1985 .

[29]  I. Tuominen,et al.  Eleven-year cycle in solar rotation and meridional motions as derived from the positions of sunspot groups , 1983 .

[30]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[31]  F. Krause Zur Dynamotheorie magnetischer Sterne: Der,, symmetrische Rotator'' als Alternative zum ,, schiefen Rotator'' , 1971 .

[32]  N. Kleeorin,et al.  Properties of a nonlinear solar dynamo model , 1981 .

[33]  D. Sokoloff,et al.  Magnetic Fields in Astrophysics , 1958 .

[34]  Fausto Cattaneo,et al.  Nonlinear dynamos: A complex generalization of the Lorenz equations , 1985 .

[35]  E. Levy,et al.  Oscillating dynamo in the presence of a fossil magnetic field - The solar cycle , 1982 .

[36]  B. Durney On Theories of Solar Rotation , 1976 .

[37]  Walter M. Elsasser,et al.  Induction Effects in Terrestrial Magnetism Part I. Theory , 1946 .

[38]  D. Gough Internal rotation and gravitational quadrupole moment of the Sun , 1982 .

[39]  F. Takens,et al.  On the nature of turbulence , 1971 .