Effects of lanthanum oxide content on mechanical properties of mechanical alloying Mo–12Si–8.5B (at.%) alloys

[1]  L. Gang,et al.  Microstructure and mechanical properties of lanthanum oxide-doped Mo–12Si–8.5B(at%) alloys , 2013 .

[2]  L. Gang,et al.  Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo–12Si–8.5B Alloys , 2012 .

[3]  R. Ritchie,et al.  On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300 °C) temperatures , 2012 .

[4]  M. Shamanian,et al.  Synthesis of α-Mo–Mo5SiB2–Mo3Si nanocomposite powders by two-step mechanical alloying and subsequent heat treatment , 2011 .

[5]  R. Sakidja,et al.  Transient oxidation of Mo–Si–B alloys: Effect of the microstructure size scale , 2009 .

[6]  M. Böning,et al.  Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties , 2008 .

[7]  R. Ritchie,et al.  On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C) , 2003 .

[8]  P. Rogl,et al.  Structural materials: metal–silicon–boron: On the melting behavior of Mo–Si–B alloys , 2002 .

[9]  E. Summers,et al.  Oxidation behavior of extruded Mo5Si3Bx–MoSi2–MoB intermetallics from 600°–1600 °C , 2002 .

[10]  H. Habazaki,et al.  Oxidation behavior of Mo5SiB2-based alloy at elevated temperatures , 2002 .

[11]  D. Dimiduk,et al.  Oxidation behavior of αMo–Mo3Si–Mo5SiB2 (T2) three phase system , 2002 .

[12]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[13]  R. N. Wright,et al.  Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .

[14]  R. Ritchie,et al.  Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic , 2000 .

[15]  Z. Meiling,et al.  Fracture toughness of sintered Mo–La2O3 alloy and the toughening mechanism , 1999 .