Sufficient condition for perfect antireflection by optical resonance at dielectric interface

Reflection occurs at an air-material interface. The development of antireflection schemes, which aims to cancel such reflection, is important for a wide variety of applications including solar cells and photodetectors. Recently, it has been demonstrated that a periodic array of resonant subwavelength objects placed at an air-material interface can significantly reduce reflection that otherwise would have occurred at such an interface. Here, we introduce the theoretical condition for complete reflection cancellation in this resonant antireflection scheme. Using both general theoretical arguments and analytical temporal coupled-mode theory formalisms, we show that in order to achieve perfect resonant antireflection, the periodicity of the array needs to be smaller than the free-space wavelength of the incident light for normal incidence, and also the resonances in the subwavelength objects need to radiate into air and the dielectric material in a balanced fashion. Our theory is validated using first-principles full-field electromagnetic simulations of structures operating in the infrared wavelength ranges. For solar cell or photodetector applications, resonant antireflection has the potential of providing a low-cost technique for antireflection that does not require nanofabrication into the absorber materials, which may introduce detrimental effects such as additional surface recombination. Our work here provides theoretical guidance for the practical design of such resonant antireflection schemes.

[1]  Zongfu Yu,et al.  Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays , 2012 .

[2]  Miro Zeman,et al.  Modulated surface textures for enhanced light trapping in thin-film silicon solar cells , 2010 .

[3]  Stefan Nolte,et al.  Realization of reflectionless potentials in photonic lattices. , 2011, Physical review letters.

[4]  J. Yu,et al.  Bioinspired parabola subwavelength structures for improved broadband antireflection. , 2010, Small.

[5]  A. Polman,et al.  Optical impedance matching using coupled plasmonic nanoparticle arrays. , 2011, Nano letters.

[6]  Martin A. Green,et al.  Optimized antireflection coatings for high-efficiency silicon solar cells , 1991 .

[7]  T. Jaramillo,et al.  Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting , 2014 .

[8]  G. M. Morris,et al.  Antireflection structured surfaces for the infrared spectral region. , 1993, Applied optics.

[9]  Zongfu Yu,et al.  Fundamental Limit of Nanophotonic Light-trapping in Solar Cells , 2010 .

[11]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[12]  E. Schubert,et al.  Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. , 2008, Optics express.

[13]  S. Fan,et al.  Optical Impedance transformer for transparent conducting electrodes , 2014, 2014 IEEE Photonics Conference.

[14]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[15]  Dante F. DeMeo,et al.  Two dimensional metallic photonic crystals for light trapping and anti-reflective coatings in thermophotovoltaic applications , 2014 .

[16]  S. D. Gupta,et al.  Optical reflectionless potentials for broadband, omnidirectional antireflection. , 2014, Optics express.

[17]  J. Martínez‐Pastor,et al.  Metasurfaces for colour printing , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[18]  A. Polman,et al.  Light Trapping in Thin Crystalline Si Solar Cells Using Surface Mie Scatterers , 2014, IEEE Journal of Photovoltaics.

[19]  M. Hutley,et al.  The Optical Properties of 'Moth Eye' Antireflection Surfaces , 1982 .

[20]  Hung-chun Chang,et al.  Design of optical path for wide-angle gradient-index antireflection coatings. , 2007, Applied optics.

[21]  Doo Seok Jeong,et al.  Silicon nanodisk array design for effective light trapping in ultrathin c-Si. , 2014, Optics express.

[22]  Daniel Poitras,et al.  Toward perfect antireflection coatings. 2. Theory. , 2004, Applied optics.

[23]  Penghui Ma,et al.  Towards “perfect” antireflection coatings , 2001 .

[24]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[25]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[26]  Zongfu Yu,et al.  Fundamental bounds on decay rates in asymmetric single-mode optical resonators. , 2013, Optics letters.

[27]  E. Yu,et al.  Large-area omnidirectional antireflection coating on low-index materials , 2013 .

[28]  A. Polman,et al.  Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination , 2013 .

[29]  L. Coldren,et al.  Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption. , 2010, Optics express.

[30]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.

[31]  Surojit Chattopadhyay,et al.  Anti-reflecting and photonic nanostructures , 2010 .

[32]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  S. P. Huber,et al.  Subwavelength single layer absorption resonance antireflection coatings. , 2014, Optics express.

[34]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[35]  Jong Kyu Kim,et al.  Broadband omnidirectional antireflection coatings optimized by genetic algorithm. , 2009, Optics letters.

[36]  A. S. Maiga,et al.  The effect of the sin optical constants on the performances of a new antireflection coating concept , 2013, 2013 IEEE Conference on Clean Energy and Technology (CEAT).

[37]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[38]  Choon-Gi Choi,et al.  Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process , 2010 .

[39]  Aaswath Raman,et al.  Radiative cooling of solar cells , 2014 .

[40]  A. Lin,et al.  The versatile designs and optimizations for cylindrical TiO2-based scatterers for solar cell anti-reflection coatings. , 2013, Optics express.

[41]  Tural Khudiyev,et al.  Non-resonant Mie scattering: Emergent optical properties of core-shell polymer nanowires , 2014, Scientific Reports.

[42]  W. Southwell Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces , 1991 .

[43]  J. Cruz-Campa,et al.  Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell. , 2014, Optics express.

[44]  Shangzhong Jin,et al.  Broadband antireflection enhancement by triangular grating microstructure in the resonance domain , 2014 .

[45]  Q. Wei,et al.  Generation of steep phase anisotropy with zero-backscattering by arrays of coupled dielectric nano-resonators , 2014 .

[46]  B. S. Thornton,et al.  Limit of the moth’s eye principle and other impedance-matching corrugations for solar-absorber design , 1975 .

[47]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[48]  Ronny Ramlau,et al.  Numerical methods for the design of gradient-index optical coatings. , 2012, Applied optics.

[49]  C. Black,et al.  Block copolymer self assembly for design and vapor-phase synthesis of nanostructured antireflective surfaces , 2014 .

[50]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[51]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[52]  D. Stavenga,et al.  Light on the moth-eye corneal nipple array of butterflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[53]  E. H. Linfoot Principles of Optics , 1961 .

[54]  Federico Capasso,et al.  Buried nanoantenna arrays: versatile antireflection coating. , 2013, Nano letters.

[55]  F. Faupel,et al.  The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow. , 2014, Nanoscale.

[56]  Penghui Ma,et al.  Toward perfect antireflection coatings: numerical investigation. , 2002, Applied optics.

[57]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[58]  Kyoung-Ho Kim,et al.  Perfect anti-reflection from first principles , 2013, Scientific Reports.

[59]  Zongfu Yu,et al.  Condition for perfect antireflection by optical resonance at material interface , 2014 .

[60]  W. Marsden I and J , 2012 .