Noncommutative Gröbner Bases For

Let K be an infinite field and K〈X〉 = K〈X1, ..., Xn〉 the free associative algebra generated by X = {X1, ..., Xn} over K. It is proved that if I is a two-sided ideal of K〈X〉 such that the K-algebra A = K〈X〉/I is almost commutative in the sense of [3], namely, with respect to its standard N-filtration FA, the associated N-graded algebra G(A) is commutative, then I is generated by a finite Gröbner basis. Therefor, every quotient algebra of the enveloping algebra U(g) of a finite dimensional K-Lie algebra g is, as a noncommutative algebra of the form A = K〈X〉/I, defined by a finite Gröbner basis in K〈X〉. 2000 Mathematics Classification Primary 16W70; Secondary 16Z05.

[1]  Huishi Li,et al.  Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .

[2]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[3]  Bernd Sturmfels,et al.  Non-commutative Gröbner bases for commutative algebras , 1998 .

[4]  Bernd Sturmfels,et al.  How to shell a monoid , 1998 .

[5]  R. Q. Huang,et al.  Projective Resolutions of Straightening Closed Algebras Generated by Miners , 1995 .

[6]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[7]  G. Rota,et al.  Higher-order syzygies for the bracket algebra and for the ring of coordinates of the Grassmanian. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[9]  D. Anick,et al.  On the homology of associative algebras , 1986 .

[10]  M. Duflo Certaines algèbres de type fini sont des algèbres de Jacobson , 1973 .

[11]  Huishi Li The General PBW Property , 2006, math/0609172.

[12]  Huishi Li,et al.  Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .

[13]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[14]  Bernd Sturmfels,et al.  How to shell a monoid , 1998 .

[15]  Bernd Sturmfels,et al.  Non-commutative Gröbner bases for commutative algebras , 1998 .

[16]  R. Q. Huang,et al.  Projective Resolutions of Straightening Closed Algebras Generated by Miners , 1995 .

[17]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[18]  G. Rota,et al.  Higher-order syzygies for the bracket algebra and for the ring of coordinates of the Grassmanian. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[20]  D. Anick,et al.  On the homology of associative algebras , 1986 .

[21]  M. Duflo Certaines algèbres de type fini sont des algèbres de Jacobson , 1973 .