Noncommutative Gröbner Bases For
暂无分享,去创建一个
[1] Huishi Li,et al. Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .
[2] J. McConnell,et al. Noncommutative Noetherian Rings , 2001 .
[3] Bernd Sturmfels,et al. Non-commutative Gröbner bases for commutative algebras , 1998 .
[4] Bernd Sturmfels,et al. How to shell a monoid , 1998 .
[5] R. Q. Huang,et al. Projective Resolutions of Straightening Closed Algebras Generated by Miners , 1995 .
[6] Teo Mora,et al. An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..
[7] G. Rota,et al. Higher-order syzygies for the bracket algebra and for the ring of coordinates of the Grassmanian. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[8] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[9] D. Anick,et al. On the homology of associative algebras , 1986 .
[10] M. Duflo. Certaines algèbres de type fini sont des algèbres de Jacobson , 1973 .
[11] Huishi Li. The General PBW Property , 2006, math/0609172.
[12] Huishi Li,et al. Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .
[13] J. McConnell,et al. Noncommutative Noetherian Rings , 2001 .
[14] Bernd Sturmfels,et al. How to shell a monoid , 1998 .
[15] Bernd Sturmfels,et al. Non-commutative Gröbner bases for commutative algebras , 1998 .
[16] R. Q. Huang,et al. Projective Resolutions of Straightening Closed Algebras Generated by Miners , 1995 .
[17] Teo Mora,et al. An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..
[18] G. Rota,et al. Higher-order syzygies for the bracket algebra and for the ring of coordinates of the Grassmanian. , 1991, Proceedings of the National Academy of Sciences of the United States of America.
[19] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[20] D. Anick,et al. On the homology of associative algebras , 1986 .
[21] M. Duflo. Certaines algèbres de type fini sont des algèbres de Jacobson , 1973 .