Dysregulation of microRNA biogenesis and gene silencing in cancer

Altered microRNA production in cancer promotes cell proliferation, migration, survival, and adaptation to new environments. MicroRNAs (miRNAs) are noncoding RNAs that play key roles in the regulation of gene expression and the maintenance of homeostasis in animals and plants. Because miRNAs contribute to the regulation of various signaling pathways that mediate cell behavior, aberrant expression of miRNAs is associated with pathological conditions, including cancer. In this review, which contains three figures and 140 references, we discuss current knowledge about how the dysregulation of miRNAs occurs and how this contributes to tumorigenesis. MicroRNAs (miRNAs) are small noncoding RNAs that suppress the abundance of partially complementary mRNAs and inhibit their translation. Each miRNA can regulate hundreds of mRNAs, sometimes strongly but often weakly, to mediate a diverse array of biological functions, including proliferation, cell signaling, differentiation, stress responses and DNA repair, cell adhesion and motility, inflammation, cell survival, senescence, and apoptosis, all intimately related to cancer initiation, treatment response, and metastasis. The expression and activity of miRNAs are spatially and temporally controlled. Global miRNA expression is reduced in many cancers. In addition, the expression and processing of cancer-related miRNAs that act as oncogenes (“oncomiRs”) or tumor suppressors are often dysregulated in cancer. In this review, we summarize emerging knowledge about how miRNA biogenesis and gene silencing are altered to promote cancer.

[1]  J. Lieberman,et al.  miR-34 a contributes to megakaryocytic differentiation of K 562 cells independently of p 53 , 2009 .

[2]  P. Fisher,et al.  Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells , 2010, Proceedings of the National Academy of Sciences.

[3]  Z. Paroo,et al.  Phosphorylation of the Human MicroRNA-Generating Complex Mediates MAPK/Erk Signaling , 2009, Cell.

[4]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[5]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[6]  A. Menssen,et al.  miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions , 2011, Cell cycle.

[7]  Jun S. Song,et al.  Negative regulation of tumor suppressor p53 by microRNA miR-504. , 2010, Molecular cell.

[8]  B. Ramratnam,et al.  Glycogen Synthase Kinase 3 Beta (GSK3β) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302 , 2011, PloS one.

[9]  D. Tollervey,et al.  Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target , 2011, Proceedings of the National Academy of Sciences.

[10]  Chih-Hao Chang,et al.  microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. , 2010, Cancer research.

[11]  O. Voinnet Origin, Biogenesis, and Activity of Plant MicroRNAs , 2009, Cell.

[12]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[13]  G. Meister Argonaute proteins: functional insights and emerging roles , 2013, Nature Reviews Genetics.

[14]  N. André,et al.  DICER1 Mutations in embryonal rhabdomyosarcomas from children with and without familial PPB‐tumor predisposition syndrome , 2012, Pediatric blood & cancer.

[15]  Š. Vaňáčová,et al.  Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs , 2013, RNA.

[16]  E. Lai,et al.  Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. , 2011, Molecular cell.

[17]  A. Książek,et al.  Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer , 2011, Tumor Biology.

[18]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[19]  J. Lieberman,et al.  miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes , 2016, Oncogene.

[20]  Hiroshi I. Suzuki,et al.  MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. , 2011, Molecular cell.

[21]  Masaru Tomita,et al.  Global microRNA elevation by inducible Exportin 5 regulates cell cycle entry. , 2013, RNA.

[22]  P. Graves,et al.  Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. , 2008, The Biochemical journal.

[23]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[24]  L. Ellis,et al.  DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. , 2013, Cell reports.

[25]  Hiroyuki Yamamoto,et al.  A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. , 2010, Cancer cell.

[26]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[27]  Simion I. Chiosea,et al.  Overexpression of Dicer in precursor lesions of lung adenocarcinoma. , 2007, Cancer research.

[28]  J. Lieberman,et al.  miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. , 2009, Blood.

[29]  E. Lai,et al.  Homeostatic control of Argonaute stability by microRNA availability , 2013, Nature Structural &Molecular Biology.

[30]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[31]  M. Rosenfeld,et al.  The RNA-binding Protein KSRP Promotes the Biogenesis of a Subset of miRNAs , 2016 .

[32]  A. Dejean,et al.  Sumoylation of Human Argonaute 2 at Lysine-402 Regulates Its Stability , 2014, PloS one.

[33]  M. Korpal,et al.  The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2* , 2008, Journal of Biological Chemistry.

[34]  Julian Downward,et al.  Hmga2 functions as a competing endogenous RNA to promote lung cancer progression , 2013, Nature.

[35]  Q. Fan,et al.  Dysregulated Expression of Dicer and Drosha in Breast Cancer , 2012, Pathology & Oncology Research.

[36]  George A. Calin,et al.  A MicroRNA Signature of Hypoxia , 2006, Molecular and Cellular Biology.

[37]  Sven Diederichs,et al.  Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization , 2011, RNA biology.

[38]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[39]  J. Opitz,et al.  Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility , 2012, Nature Genetics.

[40]  C. Croce,et al.  MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer , 2013, Immunological reviews.

[41]  H. Hermeking,et al.  SNAIL and miR‐34a feed‐forward regulation of ZNF281/ZBP99 promotes epithelial–mesenchymal transition , 2013, The EMBO journal.

[42]  S. Moss,et al.  Acetylation of Drosha on the N-Terminus Inhibits Its Degradation by Ubiquitination , 2013, PloS one.

[43]  H. Lodish,et al.  MicroRNA-125 b is a novel negative regulator of p 53 , 2009 .

[44]  H. Hermeking,et al.  Frequent Downregulation of miR-34 Family in Human Ovarian Cancers , 2010, Clinical Cancer Research.

[45]  R. Gregory,et al.  How does Lin28 let-7 control development and disease? , 2012, Trends in cell biology.

[46]  F. Camargo,et al.  Hippo Signaling Regulates Microprocessor and Links Cell-Density-Dependent miRNA Biogenesis to Cancer , 2014, Cell.

[47]  Y. Furukawa,et al.  Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8 , 2012, EMBO reports.

[48]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[49]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[50]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[51]  M. Trabucchi,et al.  PI3K/AKT signaling determines a dynamic switch between distinct KSRP functions favoring skeletal myogenesis , 2011, Cell Death and Differentiation.

[52]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[53]  Yan Wang,et al.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 , 2013, Nature.

[54]  J. Vandesompele,et al.  Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo , 2010, Cell Death and Differentiation.

[55]  H. Lodish,et al.  MicroRNA-125b is a novel negative regulator of p53. , 2009, Genes & development.

[56]  J. Lieberman,et al.  miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases , 2009, PloS one.

[57]  Gideon Rechavi,et al.  MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor growth. , 2013, The Journal of clinical investigation.

[58]  D. Brown,et al.  Systemic Delivery of a miR34a Mimic as a Potential Therapeutic for Liver Cancer , 2014, Molecular Cancer Therapeutics.

[59]  W. V. van IJcken,et al.  MicroRNA‐mediated gene silencing modulates the UV‐induced DNA‐damage response , 2009, The EMBO journal.

[60]  F. Slack,et al.  miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. , 2012, Cancer research.

[61]  Joana A. Vidigal,et al.  In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA , 2015, Proceedings of the National Academy of Sciences.

[62]  Michael T. McManus,et al.  T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire , 2013, The Journal of experimental medicine.

[63]  M. Ivan,et al.  miR-210: fine-tuning the hypoxic response. , 2014, Advances in experimental medicine and biology.

[64]  Hongyue Dai,et al.  Gene expression changes associated with progression and response in chronic myeloid leukemia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Kevin J Luebke,et al.  Faculty Opinions recommendation of The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. , 2009 .

[66]  J. Yun,et al.  MicroRNA‐195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells , 2009, Hepatology.

[67]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[68]  M. Esteller,et al.  Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. , 2014, Molecular cell.

[69]  Lin He,et al.  mir‐17‐92: a polycistronic oncomir with pleiotropic functions , 2013, Immunological reviews.

[70]  Oliver Hofmann,et al.  Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling , 2011, PLoS genetics.

[71]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[72]  Lin He,et al.  miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110 , 2014, Nature.

[73]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[74]  S. De,et al.  MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability , 2014, eLife.

[75]  W. Gu,et al.  Acetylation of p53 stimulates miRNA processing and determines cell survival following genotoxic stress , 2013, The EMBO journal.

[76]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[77]  S. Robson,et al.  Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing , 2012, Cell.

[78]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[79]  P. Grundy,et al.  Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour , 2014, Nature Communications.

[80]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[81]  R. Gregory,et al.  A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway , 2013, Nature.

[82]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[83]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[84]  Kevin Struhl,et al.  MicroRNAs Differentially Regulated by Akt Isoforms Control EMT and Stem Cell Renewal in Cancer Cells , 2009, Science Signaling.

[85]  Jing Wang,et al.  Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes , 2008, Nature Immunology.

[86]  Joana A. Vidigal,et al.  Intact p53-Dependent Responses in miR-34–Deficient Mice , 2012, PLoS genetics.

[87]  A. Rustgi,et al.  The role of the miR-200 family in epithelial-mesenchymal transition , 2010, Cancer biology & therapy.

[88]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Calin,et al.  Hypoxia Mediated Downregulation of miRNA Biogenesis Promotes Tumor Progression , 2014, Nature Communications.

[90]  Yingjie Zhang,et al.  Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization , 2010, Nucleic acids research.

[91]  F. Speleman,et al.  Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation , 2012, Nature Cell Biology.

[92]  Kotb Abdelmohsen,et al.  LincRNA-p21 suppresses target mRNA translation. , 2012, Molecular cell.

[93]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[94]  Andrea Ventura,et al.  MicroRNAs and Cancer: Short RNAs Go a Long Way , 2009, Cell.

[95]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[96]  Paul C. Boutros,et al.  Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER , 2014, Nature Communications.

[97]  Yang Shi,et al.  Hypoxia Potentiates MicroRNA-Mediated Gene Silencing through Posttranslational Modification of Argonaute2 , 2011, Molecular and Cellular Biology.

[98]  R. Krug,et al.  Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. , 2013, Cell host & microbe.

[99]  Saiful Miah,et al.  Distinct microRNA alterations characterize high- and low-grade bladder cancer. , 2009, Cancer research.

[100]  Rajiv Dhir,et al.  Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. , 2006, The American journal of pathology.

[101]  Michael T. McManus,et al.  IRE1α Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2 , 2012, Science.

[102]  M. Siomi,et al.  Posttranscriptional regulation of microRNA biogenesis in animals. , 2010, Molecular cell.

[103]  Cameron P Bracken,et al.  Genome‐wide identification of miR‐200 targets reveals a regulatory network controlling cell invasion , 2014, The EMBO journal.

[104]  W. Foulkes,et al.  DICER1: mutations, microRNAs and mechanisms , 2014, Nature Reviews Cancer.

[105]  T. Speed,et al.  A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression , 2014, Genes & development.

[106]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[107]  W. Foulkes,et al.  DICER1 mutations in an adolescent with cervical embryonal rhabdomyosarcoma (cERMS) , 2014, Pediatric blood & cancer.

[108]  R. Gregory,et al.  How does Lin 28 let-7 control development and disease ? , 2012 .

[109]  Dinesh Rakheja,et al.  Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours , 2014, Nature Communications.

[110]  E. Olson,et al.  Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. , 2010, Cancer cell.

[111]  Charles E. Park HOW AND WHY , 1946 .

[112]  Xiongbin Lu,et al.  The ATM kinase induces microRNA biogenesis in the DNA damage response. , 2011, Molecular cell.

[113]  M. R. Hough,et al.  The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. , 2012, Blood.

[114]  A. Balakrishnan,et al.  A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis , 2013, eLife.

[115]  F. Slack,et al.  A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. , 2008, Cancer research.

[116]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[117]  Carla Oliveira,et al.  A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function , 2009, Nature Genetics.

[118]  Carsten Marr,et al.  Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects , 2010, BMC Genomics.

[119]  J. Steitz,et al.  Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile , 2013, Cell reports.

[120]  Jan-Fang Cheng,et al.  Dicer, Drosha, and outcomes in patients with ovarian cancer. , 2008, The New England journal of medicine.

[121]  J. Schelter,et al.  Myc overexpression brings out unexpected antiapoptotic effects of miR-34a , 2011, Oncogene.

[122]  M. Ivan,et al.  miR‐210: More than a silent player in hypoxia , 2011, IUBMB life.

[123]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[124]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[125]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[126]  Dimitrios Iliopoulos,et al.  Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms , 2011, Cell.

[127]  M. Esteller,et al.  CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer , 2010, Oncogene.

[128]  H. Grosshans,et al.  MicroRNA turnover: when, how, and why. , 2012, Trends in biochemical sciences.

[129]  T. Kwon,et al.  An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas , 2013, Clinical and Experimental Medicine.

[130]  R. Gatti,et al.  MicroRNAs: new players in the DNA damage response. , 2011, Journal of molecular cell biology.

[131]  John T. Powers,et al.  Lin28 Enhances Tumorigenesis and is Associated With Advanced Human Malignancies , 2009, Nature Genetics.

[132]  A. Orth,et al.  Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. , 2013, Molecular cell.

[133]  O. Kent,et al.  A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes , 2006, Oncogene.

[134]  L. Aaltonen,et al.  A TARBP 2 mutation in human cancer impairs microRNA processing and DICER 1 function , 2009 .

[135]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[136]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[137]  Gretchen M. Williams,et al.  DICER1 Mutations in Familial Pleuropulmonary Blastoma , 2009, Science.

[138]  Michael A. Beer,et al.  Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation , 2009, Proceedings of the National Academy of Sciences.

[139]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[140]  J. Lieberman,et al.  miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells , 2009, Nature Structural &Molecular Biology.

[141]  J. Lieberman,et al.  miR-200-containing extracellular vesicles promote breast cancer cell metastasis. , 2014, The Journal of clinical investigation.

[142]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[143]  Ramana V. Davuluri,et al.  ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing , 2013, Cell.

[144]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[145]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[146]  P. Ongusaha,et al.  Prolyl 4-hydroxylation regulates Argonaute 2 stability , 2008, Nature.