Deep Neural Networks as Scientific Models

[1]  James J DiCarlo,et al.  Neural population control via deep image synthesis , 2018, Science.

[2]  Bolei Zhou,et al.  Interpreting Deep Visual Representations via Network Dissection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Alexander S. Ecker,et al.  Inception in visual cortex: in vivo-silico loops reveal most exciting images , 2018 .

[4]  Song-Chun Zhu,et al.  Deeper Interpretability of Deep Networks , 2018, ArXiv.

[5]  K. Kording,et al.  Appreciating diversity of goals in computational neuroscience , 2018 .

[6]  Jonas Kubilius,et al.  Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like? , 2018, bioRxiv.

[7]  Nikolaus Kriegeskorte,et al.  Cognitive computational neuroscience , 2018, Nature Neuroscience.

[8]  Surya Ganguli,et al.  Task-Driven Convolutional Recurrent Models of the Visual System , 2018, NeurIPS.

[9]  Tim C Kietzmann,et al.  Deep Neural Networks in Computational Neuroscience , 2018, bioRxiv.

[10]  Alyson K. Fletcher,et al.  Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline , 2018, Trends in Cognitive Sciences.

[11]  Reza Ebrahimpour,et al.  Beyond core object recognition: Recurrent processes account for object recognition under occlusion , 2018, bioRxiv.

[12]  Gary Marcus,et al.  Deep Learning: A Critical Appraisal , 2018, ArXiv.

[13]  James J DiCarlo,et al.  Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks , 2018, The Journal of Neuroscience.

[14]  Jonas Kubilius,et al.  Predict, then simplify , 2017, NeuroImage.

[15]  H. Steven Scholte,et al.  Fantastic DNimals and where to find them , 2017, NeuroImage.

[16]  Leon A. Gatys,et al.  Deep convolutional models improve predictions of macaque V1 responses to natural images , 2017, bioRxiv.

[17]  David Cox,et al.  Recurrent computations for visual pattern completion , 2017, Proceedings of the National Academy of Sciences.

[18]  Kendrick N. Kay,et al.  Principles for models of neural information processing , 2017, NeuroImage.

[19]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[20]  Klaus-Robert Müller,et al.  Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models , 2017, ArXiv.

[21]  T. Yarkoni,et al.  Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning , 2017, Perspectives on psychological science : a journal of the Association for Psychological Science.

[22]  Marcel A. J. van Gerven,et al.  Computational Foundations of Natural Intelligence , 2017, bioRxiv.

[23]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[24]  Michael Eickenberg,et al.  Seeing it all: Convolutional network layers map the function of the human visual system , 2017, NeuroImage.

[25]  Tomoyasu Horikawa,et al.  Generic decoding of seen and imagined objects using hierarchical visual features , 2015, Nature Communications.

[26]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[27]  Thomas L. Griffiths,et al.  Adapting Deep Network Features to Capture Psychological Representations: An Abridged Report , 2017, IJCAI.

[28]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.

[29]  Antonio Torralba,et al.  Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence , 2016, Scientific Reports.

[30]  Jonas Kubilius,et al.  Deep Neural Networks as a Computational Model for Human Shape Sensitivity , 2016, PLoS Comput. Biol..

[31]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[32]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[33]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[34]  Models and the limits of theory: quantum Hamiltonians and the BCS model of superconductivity , 2016 .

[35]  Axel Gelfert Between Theory and Phenomena: What are Scientific Models? , 2016 .

[36]  Axel Gelfert Strategies and Trade-Offs in Model-Building , 2016 .

[37]  Mandy Eberhart,et al.  The Scientific Image , 2016 .

[38]  Axel Gelfert,et al.  Exploratory Uses of Scientific Models , 2016 .

[39]  Jitendra Malik,et al.  Region-Based Convolutional Networks for Accurate Object Detection and Segmentation , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Axel Gelfert How to Do Science with Models: A Philosophical Primer , 2015 .

[41]  Nikolaus Kriegeskorte,et al.  Deep neural networks: a new framework for modelling biological vision and brain information processing , 2015, bioRxiv.

[42]  Marcel A J van Gerven,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2015, The Journal of Neuroscience.

[43]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[44]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[45]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[46]  Bolei Zhou,et al.  Object Detectors Emerge in Deep Scene CNNs , 2014, ICLR.

[47]  Andrea Vedaldi,et al.  Understanding deep image representations by inverting them , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Matthias Bethge,et al.  Deep Gaze I: Boosting Saliency Prediction with Feature Maps Trained on ImageNet , 2014, ICLR.

[49]  Alexander Mordvintsev,et al.  Inceptionism: Going Deeper into Neural Networks , 2015 .

[50]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[51]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[52]  Ivan Laptev,et al.  Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  S. G. Sterrett The morals of model-making. , 2014, Studies in history and philosophy of science.

[54]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[55]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[56]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[57]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[58]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[59]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[60]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[61]  Exploratory Experiments, Concept Formation, and Theory Construction in Psychology , 2012 .

[62]  A. Baddeley Working memory: theories, models, and controversies. , 2012, Annual review of psychology.

[63]  J. Matthewson Trade-offs in model-building: a more target-oriented approach , 2011 .

[64]  Tarja Knuuttila,et al.  Modelling and representing: An artefactual approach to model-based representation , 2011 .

[65]  Tarja Knuuttila,et al.  Models as Epistemic Tools in Engineering Sciences: A Pragmatic Approach. , 2009 .

[66]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[67]  Geoffrey E. Hinton Learning multiple layers of representation , 2007, Trends in Cognitive Sciences.

[68]  C. Waters,et al.  The nature and context of exploratory experimentation: an introduction to three case studies of exploratory research. , 2007, History and philosophy of the life sciences.

[69]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[70]  M. Strevens Scientific Explanation , 2005 .

[71]  Leo Breiman,et al.  Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001 .

[72]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[73]  N. Cartwright Models as Mediators: Models and the limits of theory: quantum Hamiltonians and the BCS models of superconductivity , 1999 .

[74]  Margaret Morrison,et al.  Models as Mediating Instruments , 1999 .

[75]  T. van Gelder The dynamical hypothesis in cognitive science. , 1998, The Behavioral and brain sciences.

[76]  Friedrich Steinle,et al.  Entering New Fields: Exploratory Uses of Experimentation , 1997, Philosophy of Science.

[77]  R. Burian,et al.  Exploratory experimentation and the role of histochemical techniques in the work of Jean Brachet, 1938-1952. , 1997, History and philosophy of the life sciences.

[78]  John R. Anderson The Adaptive Character of Thought , 1990 .

[79]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[80]  P. Kitcher Explanatory unification and the causal structure of the world , 1989 .

[81]  J. Woodward,et al.  Scientific Explanation and the Causal Structure of the World , 1988 .

[82]  Bas C. van Fraassen,et al.  The Scientific Image , 1980 .

[83]  M. Friedman Explanation and Scientific Understanding , 1974 .

[84]  Scientific Discovery: Logical, Psychological, or Hermeneutical? , 1973 .

[85]  Mary Hesse,et al.  Models and analogies in science , 1970 .

[86]  P. Achinstein Concepts of Science: A Philosophical Analysis , 1968 .

[87]  Edward Mackinnon Aspects of Scientific Explanation: and Other Essays in the Philosophy of Science , 1967 .

[88]  R. Levins The strategy of model building in population biology , 1966 .

[89]  C. Hempel,et al.  Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. , 1966 .

[90]  M. Black Models and metaphors : studies in language and philosophy , 1962 .

[91]  C. Hempel,et al.  Studies in the Logic of Explanation , 1948, Philosophy of Science.

[92]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .