Rhodium-Organic Cuboctahedra as Porous Solids with Strong Binding Sites.

The upbuilding of dirhodium tetracarboxylate paddlewheels into porous architectures is still challenging because of the inertness of equatorial carboxylates for ligand-exchange reaction. Here we demonstrate the synthesis of a new family of metal-organic cuboctahedra by connecting dirhodium units through 1,3-benzenedicarboxylate and assembling cuboctahedra as porous solids. Carbon monoxide and nitric oxide were strongly trapped in the internal cavity thanks to the strong affinity of unsaturated axial coordination sites of dirhodium centers.

[1]  Seth M. Cohen,et al.  Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra. , 2016, Journal of the American Chemical Society.

[2]  M. Head‐Gordon,et al.  Hetero-bimetallic metal-organic polyhedra. , 2016, Chemical communications.

[3]  P. Cheng,et al.  Coordination-Driven Polymerization of Supramolecular Nanocages. , 2015, Journal of the American Chemical Society.

[4]  M. Kondo,et al.  Porous frameworks constructed by non-covalent linking of substitution-inert metal complexes. , 2015, Dalton transactions.

[5]  E. Gutiérrez‐Puebla,et al.  Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions. , 2015, Journal of the American Chemical Society.

[6]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[7]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[8]  S. Sakaki,et al.  Interaction of various gas molecules with paddle-wheel-type open metal sites of porous coordination polymers: theoretical investigation. , 2014, Inorganic chemistry.

[9]  S. Kitagawa,et al.  A porous coordination polymer with a reactive diiron paddlewheel unit. , 2014, Chemical communications.

[10]  S. Sakaki,et al.  Self-Accelerating CO Sorption in a Soft Nanoporous Crystal , 2014, Science.

[11]  Michel Waroquier,et al.  Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). , 2013, Journal of the American Chemical Society.

[12]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[13]  Hong‐Cai Zhou,et al.  Interconversion between discrete and a chain of nanocages: self-assembly via a solvent-driven, dimension-augmentation strategy. , 2012, Journal of the American Chemical Society.

[14]  W. Mori,et al.  Hetero Bi-Paddle-Wheel Coordination Networks: A New Synthetic Route to Rh-Containing Metal–Organic Frameworks , 2012 .

[15]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[16]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[17]  Hong-Cai Zhou,et al.  Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers. , 2010, Journal of the American Chemical Society.

[18]  Hong-Cai Zhou,et al.  Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. , 2010, Nature chemistry.

[19]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[20]  S. Kaskel,et al.  Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco , 2008 .

[21]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[22]  O. Sizova The valence structure analysis for dirhodium(II) tetracarboxylato complexes with nitric oxide as axial ligand , 2006 .

[23]  Hong-Cai Zhou,et al.  Synthesis and structure of cuboctahedral and anticuboctahedral cages containing 12 quadruply bonded dimolybdenum units. , 2005, Inorganic chemistry.

[24]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[25]  J. Son,et al.  Triply interpenetrating coordination polymers based on paddle-wheel type secondary-building units of M2(CO2R)4: [Ni3(2,6-NDC)3(bipy)1.5], [Co3(2,6-NDC)3(bipy)1.5], and [Co(1,3-BDC)(bipyen)] (2,6-NDC=2,6-naphthalenedicarboxylate; 1,3-BDC=1,3-benzenedicarboxylate; bipy=4,4′-bipyridine; bipyen=trans-1, , 2003 .

[26]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[27]  M. Eddaoudi,et al.  Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. , 2001, Journal of the American Chemical Society.

[28]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[29]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[30]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[31]  M. Pirrung,et al.  Electronic Effects in Dirhodium(II) Carboxylates. Linear Free Energy Relationships in Catalyzed Decompositions of Diazo Compounds and CO and Isonitrile Complexation , 1994 .

[32]  Hong‐Cai Zhou,et al.  Metal–organic polyhedra constructed from dinuclear ruthenium paddlewheels , 2015 .

[33]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[34]  Michael J. Zaworotko,et al.  Nanoballs: nanoscale faceted polyhedra with large windows and cavities , 2001 .