Climatology Analysis of Aerosol Effect on Marine Water Cloud from Long-Term Satellite Climate Data Records

Satellite aerosol and cloud climate data records (CDRs) have been used successfully to study the aerosol indirect effect (AIE). Data from the Advanced Very High Resolution Radiometer (AVHRR) now span more than 30 years and allow these studies to be conducted from a climatology perspective. In this paper, AVHRR data are used to study the AIE on water clouds over the global oceans. Correlation analysis between aerosol optical thickness (AOT) and cloud parameters, including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), and cloud cover fraction (CCF), is performed. For the first time from satellite observations, the long-term trend in AIE over the global oceans is also examined. Three regimes have been identified: (1) AOT 0.3, where CDER first increases with AOT and then levels off. AIE is easy to manifest in the CDER reduction in the second regime (named Regime 2), which is identified as the AIE sensitive/effective regime. The AIE manifested in the consistent changes of all four cloud variables (CDER, COD, CWP, and CCF) together is located only in limited areas and with evident seasonal variations. The long-term trend of CDER changes due to the AIE of AOT changes is detected and falls into three scenarios: Evident CDER decreasing (increasing) with significant AOT increasing (decreasing) and evident CDER decreasing with limited AOT increasing but AOT values fall in the AIE sensitive Regime 2.

[1]  John H. Seinfeld,et al.  The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol‐cloud relationships in marine stratocumulus , 2007 .

[2]  Patrick Minnis,et al.  Comparison and analysis of two aerosol retrievals over the ocean in the Terra/Clouds and the Earth's Radiant Energy System–Moderate Resolution Imaging Spectroradiometer single scanner footprint data: 2. Regional evaluation , 2005 .

[3]  Y. Kaufman,et al.  The effect of smoke particles on clouds and climate forcing , 1997 .

[4]  Xuepeng Zhao,et al.  Satellite Observed Aerosol Optical Thickness and Trend around Megacities in the Coastal Zone , 2015 .

[5]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[6]  James O. Pinto,et al.  Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme , 2005 .

[7]  Andrew K. Heidinger,et al.  Long-term trends of zonally averaged aerosol optical thickness observed from operational satellite AVHRR instrument† , 2011 .

[8]  J. Brenguier,et al.  Microphysical properties of stratocumulus clouds during ACE‐2 , 2000 .

[9]  C. C. Chuang,et al.  A parameterization of cloud droplet nucleation , 1993 .

[10]  G. L. Stephens,et al.  Radiation Profiles in Extended Water Clouds. I: Theory , 1978 .

[11]  A. Heidinger,et al.  Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels , 2002 .

[12]  Yoram J. Kaufman,et al.  Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach , 2001 .

[13]  J. Coakley,et al.  Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations , 2005 .

[14]  Gregory C. Reinsel,et al.  Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation , 1990 .

[15]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[16]  Zhanqing Li,et al.  Long-term impacts of aerosols on the vertical development of clouds and precipitation , 2011 .

[17]  Teruyuki Nakajima,et al.  A possible correlation between satellite‐derived cloud and aerosol microphysical parameters , 2001 .

[18]  L. Ruby Leung,et al.  Heavy pollution suppresses light rain in China: Observations and modeling , 2009 .

[19]  F. Bréon,et al.  Aerosol Effect on Cloud Droplet Size Monitored from Satellite , 2002, Science.

[20]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[21]  Andrew K. Heidinger,et al.  A global survey of the effect of cloud contamination on the aerosol optical thickness and its long‐term trend derived from operational AVHRR satellite observations , 2013 .

[22]  Glen Lesins,et al.  Contribution of Changes in Sea Surface Temperature and Aerosol Loading to the Decreasing Precipitation Trend in Southern China , 2005 .

[23]  Norman G. Loeb,et al.  An Observational Study of the Relationship Between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions , 2013 .

[24]  Brent N. Holben,et al.  Validation of two‐channel VIRS retrievals of aerosol optical thickness over ocean and quantitative evaluation of the impact from potential subpixel cloud contamination and surface wind effect , 2003 .

[25]  Changyong Cao,et al.  Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers , 2004 .

[26]  Leon D. Rotstayn,et al.  A smaller global estimate of the second indirect aerosol effect , 2005 .

[27]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[28]  Yoram J. Kaufman,et al.  Disentangling the role of microphysical and dynamical effects in determining cloud properties over the Atlantic , 2006 .

[29]  Ilan Koren,et al.  Smoke and Pollution Aerosol Effect on Cloud Cover , 2006, Science.

[30]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[31]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[32]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[33]  George A. Isaac,et al.  Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations , 1996 .

[34]  Teruyuki Nakajima,et al.  A Study of the Aerosol Effect on a Cloud Field with Simultaneous Use of GCM Modeling and Satellite Observation , 2004 .

[35]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[36]  Leon D. Rotstayn,et al.  Cloud droplet spectral dispersion and the indirect aerosol effect: Comparison of two treatments in a GCM , 2009 .

[37]  K. Noone,et al.  The Monterey Area Ship Track Experiment , 2000 .

[38]  Hanna Pawlowska,et al.  An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations , 2003 .

[39]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[40]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[41]  K. Moffett,et al.  Remote Sens , 2015 .

[42]  Leon D. Rotstayn,et al.  Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration , 2003 .

[43]  Leon D. Rotstayn,et al.  Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective‐radius and cloud‐lifetime effects , 1999 .

[44]  A. Heidinger,et al.  Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record , 2010 .

[45]  Changyong Cao,et al.  Study of long‐term trend in aerosol optical thickness observed from operational AVHRR satellite instrument , 2008 .

[46]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[47]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[48]  Johannes Quaas,et al.  Evaluating aerosol//cloud//radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations , 2003 .

[49]  Martin Gallagher,et al.  Aerosol partitioning between the interstitial and the condensed phase in mixed‐phase clouds , 2007 .

[50]  Andi Walther,et al.  A Naive Bayesian Cloud-Detection Scheme Derived fromCALIPSOand Applied within PATMOS-x , 2012 .

[51]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[52]  J. D. Neelin,et al.  Local and Remote Impacts of Aerosol Climate Forcing on Tropical Precipitation , 2005 .

[53]  Hanna Pawlowska,et al.  Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate , 2003 .

[54]  Ralf Bennartz,et al.  Global assessment of marine boundary layer cloud droplet number concentration from satellite , 2007 .

[55]  Taneil Uttal,et al.  Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons , 2005 .

[56]  Frank McGovern,et al.  The 2nd Aerosol Characterization Experiment (ACE-2): general overview and main results , 2000 .

[57]  Ilan Koren,et al.  The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Lorraine A. Remer,et al.  Smoke Invigoration Versus Inhibition of Clouds over the Amazon , 2008, Science.

[59]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[60]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[61]  Alexander Smirnov,et al.  Regional evaluation of an advanced very high resolution radiometer (AVHRR) two‐channel aerosol retrieval algorithm , 2004 .

[62]  Guosheng Liu,et al.  Why is the satellite observed aerosol's indirect effect so variable? , 2005 .

[63]  Judith A. Curry,et al.  A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds , 2005 .

[64]  Alexander Ignatov,et al.  Aerosol Retrievals from Individual AVHRR Channels. Part I: Retrieval Algorithm and Transition from Dave to 6S Radiative Transfer Model , 2002 .

[65]  B. J. Mason,et al.  The physics of clouds , 1971 .

[66]  James G. Hudson,et al.  Measurements of cloud condensation nuclei spectra within maritime cumulus cloud droplets : implications for mixing processes , 1995 .

[67]  Roger A. Pielke,et al.  Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study , 2006 .

[68]  Qingyuan Han,et al.  Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions , 2002 .

[69]  Steven Businger,et al.  An overview of the Lagrangian experiments undertaken during the North Atlantic regional Aerosol Characterisation Experiment (ACE-2) , 2000 .

[70]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[71]  Xiquan Dong,et al.  Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores , 2015 .

[72]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[73]  Andi Walther,et al.  Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x , 2012 .

[74]  Timothy Logan,et al.  Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores , 2014 .

[75]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[76]  George Tselioudis,et al.  GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden , 2002 .

[77]  Andi Walther,et al.  The Pathfinder Atmospheres–Extended AVHRR Climate Dataset , 2014 .

[78]  Andrew K. Heidinger,et al.  Pollution from China increases cloud droplet number, suppresses rain over the East China Sea , 2011 .

[79]  Jacques Pelon,et al.  An overview of the ACE2 CLOUDYCOLUMN closure experiment , 2000 .

[80]  M. King,et al.  Direct and Remote Sensing Observations of the Effects of Ships on Clouds , 1989, Science.

[81]  Melanie A. Wetzel,et al.  Satellite‐observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing , 1999 .

[82]  Patrick Minnis,et al.  Comparison and analysis of two aerosol retrievals over the ocean in the Terra / Clouds and the Earth ’ s Radiant Energy System – Moderate , 2005 .

[83]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[84]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .