Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes

A theoretical model for the frequency response of InP/InGaAs avalanche photodiodes (APDs) is presented. Included in the analysis are resistive, capacitive, and inductive parasitics, transit-time factors, hole trapping at the heterojunction interfaces, and the avalanche buildup time. The contributions of the primary electrons, primary holes, and secondary electrons to the transit-time-limited response are considered separately. Using a measurement apparatus which consists of a frequency synthesizer and a spectrum analyzer controlled by a microcomputer, the frequency response of InP/InGaAsP/InGaAs APDs grown by chemical-beam epitaxy are measured. Good agreement with the calculated response has been obtained over a wide range of gains. >

[1]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[2]  Sadao Fujita,et al.  Small area planar InGaAs avalanche photodiode with 7.5-GHz wide bandwidth , 1988 .

[3]  U. Koren,et al.  High-speed, polyimide-based semi-insulating planar buried heterostructures , 1987 .

[4]  John E. Bowers,et al.  InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain‐bandwidth product , 1987 .

[5]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[6]  W. Powazinik,et al.  Measurement of hole velocity in n-type InGaAs , 1987 .

[7]  H. Machida,et al.  Optimized GaInAs avalanche photodiode with low noise and large gain-bandwidth product , 1987 .

[8]  John E. Bowers,et al.  8 Gbit/s transmission over 30 km of optical fibre , 1986 .

[9]  Joe C. Campbell,et al.  Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption "grading" and multiplication regions , 1985 .

[10]  G. Eisenstein,et al.  4-Gb/s transmission experiment over 117 km of optical fiber using a Ti:LiNbO3external modulator , 1985, Journal of Lightwave Technology.

[11]  R. Yen,et al.  4-Gbit/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer , 1985, Journal of Lightwave Technology.

[12]  Joe C. Campbell,et al.  Improved frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading and multiplication regions , 1985 .

[13]  John E. Bowers,et al.  InGaAs PIN photodetectors with modulation response to millimetre wavelengths , 1985 .

[14]  John E. Bowers,et al.  Improved very-high-speed packaged InGaAs PIN punch-through photodiode , 1985 .

[15]  Richard A. Linke,et al.  130 KM TRANSMISSION EXPERIMENT AT 2 GB/S USING SILICA-CORE FIBER AND A VAPOR PHASE TRANSPORTED DFB LASER. , 1984 .

[16]  G. E. Stillman,et al.  Temperature dependent electron velocity-field characteristics for In0.53Ga0.47AS at high electric fields , 1982 .

[17]  S. R. Forrest,et al.  Optical response time of In0.53Ga0.47As/InP avalanche photodiodes , 1982 .

[18]  Y. Matsushima,et al.  New type InGaAs/InP heterostructure avalanche photodiode with buffer layer , 1981, IEEE Electron Device Letters.

[19]  S. Personick Receiver design for digital fiber optic communication systems, II , 1973 .

[20]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .