Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise
暂无分享,去创建一个
[1] Giorgio C. Buttazzo,et al. Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.
[2] Ioana Ciotir,et al. Corrigendum to “Convergence of invariant measures for singular stochastic diffusion equations” [Stochastic Process. Appl. 122 (2012) 1998–2017] , 2013 .
[3] K. Kadlec,et al. Stochastic Evolution Equations , 2013 .
[4] Michael Röckner,et al. Finite time extinction of solutions to fast diffusion equations driven by linear multiplicative noise , 2012 .
[5] Jonas M. Tolle,et al. Convergence of invariant measures for singular stochastic diffusion equations , 2012, 1201.2839.
[6] Michael Röckner,et al. Stochastic Porous Media Equations and Self-Organized Criticality: Convergence to the Critical State in all Dimensions , 2011, 1102.3593.
[7] Addendum to : “ Stochastic nonlinear diffusion equations with singular diffusivity ” , 2012 .
[8] Michael Röckner,et al. On a random scaled porous media equation , 2011 .
[9] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[10] Yoshikazu Giga,et al. Scale-Invariant Extinction Time Estimates for Some Singular Diffusion Equations , 2010 .
[11] Viorel Barbu,et al. Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .
[12] Michael Röckner,et al. Stochastic Nonlinear Diffusion Equations with Singular Diffusivity , 2009, SIAM J. Math. Anal..
[13] V. Barbu,et al. A PDE variational approach to image denoising and restoration , 2009 .
[14] Michael Röckner,et al. Stochastic Porous Media Equations and Self-Organized Criticality , 2008, 0801.2478.
[15] N. Krylov,et al. Itô’s formula for the Lp-norm of stochastic $${W^{1}_{p}}$$ -valued processes , 2008, 0806.1557.
[16] Amjad Tuffaha,et al. Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .
[17] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[18] V. Barbu,et al. Existence and uniqueness of nonnegative solutions to the stochastic porous media equation , 2007, math/0703420.
[19] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[20] Andy M. Yip,et al. Total Variation Image Restoration: Overview and Recent Developments , 2006, Handbook of Mathematical Models in Computer Vision.
[21] Giuseppe Buttazzo,et al. Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization (Mps-Siam Series on Optimization 6) , 2005 .
[22] V. Caselles,et al. Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .
[23] Y. Giga,et al. On Constrained Equations with Singular Diffusivity , 2003 .
[24] Jesús Ildefonso Díaz Díaz,et al. Some qualitative properties for the total variation flow , 2002 .
[25] Y. Giga,et al. Generalized Motion¶by Nonlocal Curvature in the Plane , 2000 .
[26] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[27] Yoshikazu Giga,et al. Equations with Singular Diffusivity , 1998 .
[28] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[29] 平良 和昭. Analytic semigroups and semilinear initial boundary value problems , 1995 .
[30] Jerzy Zabczyk,et al. Stochastic Equations in Infinite Dimensions: Foundations , 1992 .
[31] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[32] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[33] É. Pardoux,et al. Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .
[34] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[35] Haim Brezis,et al. Sur la régularité de la solution d'inéquations elliptiques , 1968 .