Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise

[1]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[2]  Ioana Ciotir,et al.  Corrigendum to “Convergence of invariant measures for singular stochastic diffusion equations” [Stochastic Process. Appl. 122 (2012) 1998–2017] , 2013 .

[3]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[4]  Michael Röckner,et al.  Finite time extinction of solutions to fast diffusion equations driven by linear multiplicative noise , 2012 .

[5]  Jonas M. Tolle,et al.  Convergence of invariant measures for singular stochastic diffusion equations , 2012, 1201.2839.

[6]  Michael Röckner,et al.  Stochastic Porous Media Equations and Self-Organized Criticality: Convergence to the Critical State in all Dimensions , 2011, 1102.3593.

[7]  Addendum to : “ Stochastic nonlinear diffusion equations with singular diffusivity ” , 2012 .

[8]  Michael Röckner,et al.  On a random scaled porous media equation , 2011 .

[9]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[10]  Yoshikazu Giga,et al.  Scale-Invariant Extinction Time Estimates for Some Singular Diffusion Equations , 2010 .

[11]  Viorel Barbu,et al.  Nonlinear Differential Equations of Monotone Types in Banach Spaces , 2010 .

[12]  Michael Röckner,et al.  Stochastic Nonlinear Diffusion Equations with Singular Diffusivity , 2009, SIAM J. Math. Anal..

[13]  V. Barbu,et al.  A PDE variational approach to image denoising and restoration , 2009 .

[14]  Michael Röckner,et al.  Stochastic Porous Media Equations and Self-Organized Criticality , 2008, 0801.2478.

[15]  N. Krylov,et al.  Itô’s formula for the Lp-norm of stochastic $${W^{1}_{p}}$$ -valued processes , 2008, 0806.1557.

[16]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[17]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[18]  V. Barbu,et al.  Existence and uniqueness of nonnegative solutions to the stochastic porous media equation , 2007, math/0703420.

[19]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[20]  Andy M. Yip,et al.  Total Variation Image Restoration: Overview and Recent Developments , 2006, Handbook of Mathematical Models in Computer Vision.

[21]  Giuseppe Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization (Mps-Siam Series on Optimization 6) , 2005 .

[22]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[23]  Y. Giga,et al.  On Constrained Equations with Singular Diffusivity , 2003 .

[24]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[25]  Y. Giga,et al.  Generalized Motion¶by Nonlocal Curvature in the Plane , 2000 .

[26]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[27]  Yoshikazu Giga,et al.  Equations with Singular Diffusivity , 1998 .

[28]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[29]  平良 和昭 Analytic semigroups and semilinear initial boundary value problems , 1995 .

[30]  Jerzy Zabczyk,et al.  Stochastic Equations in Infinite Dimensions: Foundations , 1992 .

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  Gian-Carlo Rota Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .

[33]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[34]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[35]  Haim Brezis,et al.  Sur la régularité de la solution d'inéquations elliptiques , 1968 .