Circuit-Oriented Symmetry Verification: From Quantum Switches to Spatio-Temporal Stabilizers

State-of-the-art noisy intermediate-scale quantum computers require low-complexity techniques for the mitigation of computational errors inflicted by quantum decoherence. Symmetry verification constitutes a class of quantum error mitigation (QEM) techniques, which distinguishes erroneous computational results from the correct ones by exploiting the intrinsic symmetry of the computational tasks themselves. Inspired by the benefits of quantum switch in the quantum communication theory, we propose beneficial techniques for circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state. In particular, we propose the spatio-temporal stabilizer (STS) technique, which generalizes the conventional quantumdomain stabilizer formalism to circuit-oriented stabilizers. The applicability and implementational strategies of the proposed techniques are demonstrated by using practical quantum algorithms, including the quantum Fourier transform (QFT) and the quantum approximate optimization algorithm (QAOA).

[1]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[2]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[3]  B. Nachman,et al.  Zero-noise extrapolation for quantum-gate error mitigation with identity insertions , 2020, Physical Review A.

[4]  Some Sankar Bhattacharya,et al.  Indefinite causal order enables perfect quantum communication with zero capacity channels , 2018, New Journal of Physics.

[5]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[6]  K. C. Tan,et al.  Error mitigation in quantum metrology via zero noise extrapolation , 2021, 2101.03766.

[7]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[8]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[9]  Zhenyu Cai,et al.  Quantum Error Mitigation using Symmetry Expansion , 2021, Quantum.

[10]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[11]  Soon Xin Ng,et al.  Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs. Coded Systems , 2020, IEEE Access.

[12]  Philippe Allard Gu'erin,et al.  Communication through quantum-controlled noise , 2018, Physical Review A.

[13]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[14]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[15]  Giulio Chiribella,et al.  Quantum Shannon theory with superpositions of trajectories , 2018, Proceedings of the Royal Society A.

[16]  Tyson Jones,et al.  QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator , 2019, Quantum Science and Technology.

[17]  Ryan Babbush,et al.  Decoding quantum errors with subspace expansions , 2019, Nature Communications.

[18]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective , 2018, IEEE Access.

[19]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[20]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[21]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[22]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[23]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[24]  B'alint Koczor Exponential Error Suppression for Near-Term Quantum Devices , 2021, Physical Review X.

[25]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Ying Li,et al.  Variational algorithms for linear algebra. , 2019, Science bulletin.

[27]  Giulio Chiribella,et al.  Quantum communication in a superposition of causal orders , 2018, ArXiv.

[28]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[29]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[30]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[31]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[32]  Angela Sara Cacciapuoti,et al.  Quantum Switch for the Quantum Internet: Noiseless Communications Through Noisy Channels , 2019, IEEE Journal on Selected Areas in Communications.

[33]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[34]  Johannes Jakob Meyer,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[35]  Ryan Babbush,et al.  Virtual Distillation for Quantum Error Mitigation , 2021, Physical Review X.

[36]  Zhenyu Cai,et al.  Resource-efficient Purification-based Quantum Error Mitigation , 2021, 2107.07279.

[37]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[38]  Ryuji Takagi,et al.  Optimal resource cost for error mitigation , 2020, Physical Review Research.

[39]  Ryan LaRose,et al.  Digital zero noise extrapolation for quantum error mitigation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[40]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[41]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[43]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[44]  C. Branciard,et al.  Indefinite Causal Order in a Quantum Switch. , 2018, Physical review letters.