APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS

Direct imaging and spectroscopy of young giant planets from the ground requires broadband starlight suppression with coronagraphy. It is important to minimize the coronagraph chromatic sensitivity to help remove residual speckles through post-processing of images at multiple wavelengths. The coronagraph must also be able to mitigate the effects of ground-based telescopes with central obstruction. We present new properties of the Apodized Pupil Lyot Coronagraph (APLC) that enable quasi-achromatic starlight suppression over a broad bandpass (20%) and with central obstructions. We discuss the existence of these quasi-achromatic solutions using the properties of the generalized prolate spheroidal functions, which are used to define the apodizer profile. We discuss a broadband optimization method and illustrate its parameter space in terms of inner working angle and contrast. These new APLC solutions are implemented in the Gemini Planet Imager (GPI), a new facility instrument to detect and characterize young giant planets and disks, which will be commissioned in 2011. The coronagraph design delivers a contrast better than 10–7 beyond a separation of 0.2 arcsec in the presence of Gemini's central obstruction over a 20% bandpass. The science camera is an integral field spectrograph observing in one of the Y, J, or H, or in about two-thirds of the K bandpass, at a single time. Similar solutions have also been used for the Palomar 1640 coronagraphic integral field spectrograph.

[1]  B. Lyot The study of the solar corona and prominences without eclipses (George Darwin Lecture, 1939) , 1939 .

[2]  D. Slepian Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .

[3]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[4]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[5]  P. Baudoz,et al.  Achromatic interfero coronagraphy I. Theoretical capabilities for ground-based observations , 2000 .

[6]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[7]  Eric E. Bloemhof,et al.  Behavior of Remnant Speckles in an Adaptively Corrected Imaging System , 2001 .

[8]  A. Sivaramakrishnan,et al.  Ground-based Coronagraphy with High-order Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[9]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[10]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[11]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[12]  C. Aime,et al.  Total coronagraphic extinction of rectangular apertures using linear prolate apodizations , 2002 .

[13]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[14]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[15]  C. Aime,et al.  Achromatic dual-zone phase mask stellar coronagraph , 2003 .

[16]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[17]  R. Vanderbei,et al.  Circularly Symmetric Apodization via Star-shaped Masks , 2003, astro-ph/0305045.

[18]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[19]  Eric E. Bloemhof Suppression of Speckle Noise by Speckle Pinning in Adaptive Optics , 2003 .

[20]  Claude Aime,et al.  The Usefulness and Limits of Coronagraphy in the Presence of Pinned Speckles , 2004 .

[21]  Russell B. Makidon,et al.  The Lyot project: toward exoplanet imaging and spectroscopy , 2004, SPIE Astronomical Telescopes + Instrumentation.

[22]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[23]  Adam Burrows,et al.  Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets , 2004, astro-ph/0401522.

[24]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[25]  James P. Lloyd,et al.  Spiders in Lyot Coronagraphs , 2005, astro-ph/0506564.

[26]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[27]  C. Aime Principle of an Achromatic Prolate Apodized Lyot Coronagraph , 2005 .

[28]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[29]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[30]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. III. Diffraction Effects and Coronagraph Design , 2006 .

[31]  James R. Graham,et al.  Speckle Statistics in Adaptively Corrected Images , 2006 .

[32]  S. Ridgway,et al.  Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs , 2006, astro-ph/0608506.

[33]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[34]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronograph. II. Performance , 2006 .

[35]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[36]  C. Aime,et al.  Speckle Noise and Dynamic Range in Coronagraphic Images , 2007, 0706.1739.

[37]  P. Baudoz,et al.  Optimization of apodized pupil Lyot coronagraph for ELTs , 2007 .

[38]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[39]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[40]  Brian J. Bauman,et al.  An end-to-end polychromatic Fresnel propagation model of GPI , 2008, Astronomical Telescopes + Instrumentation.

[41]  R. Soummer,et al.  Sensing Phase Aberrations behind Lyot Coronagraphs , 2008 .

[42]  C. Aime,et al.  Interferometric apodization of telescope apertures. I. First laboratory results obtained using a Mac , 2008 .

[43]  T. Fusco,et al.  Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes , 2008, 0809.2876.

[44]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[45]  Ian R. Parry,et al.  A new integral field spectrograph for exoplanetary science at Palomar , 2008, Astronomical Telescopes + Instrumentation.

[46]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[47]  John E. Krist,et al.  Extraction of extrasolar planet spectra from realistically simulated wavefront-corrected coronagraphic fields , 2008, Astronomical Telescopes + Instrumentation.

[48]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[49]  Shane Jacobson,et al.  HiCIAO: the Subaru Telescope's new high-contrast coronographic imager for adaptive optics , 2008, Astronomical Telescopes + Instrumentation.

[50]  Michael Shao,et al.  Post-coronagraph wavefront sensor for Gemini Planet Imager , 2008, Astronomical Telescopes + Instrumentation.

[51]  Ben R. Oppenheimer,et al.  High-Contrast Observations in Optical and Infrared Astronomy , 2009 .

[52]  C. Aime,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. II. THEORETICAL PROPERTIES AND APPLICATION TO EXTREMELY LARGE TELESCOPES , 2009 .

[53]  Frantz Martinache,et al.  The Subaru Coronagraphic Extreme-AO Project , 2009, Optical Engineering + Applications.

[54]  C. Dorrer,et al.  Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph , 2008, 0810.5678.

[55]  C. Dorrer,et al.  Design, analysis, and testing of a microdot apodizer for the apodized pupil Lyot coronagraph - II. Impact of the dot size , 2009, 0904.2481.

[56]  Brian J. Bauman,et al.  The Gemini Planet Imager coronagraph testbed , 2009, Optical Engineering + Applications.

[57]  Christophe Dorrer,et al.  Calibrating IR optical densities for the Gemini Planet Imager extreme adaptive optics coronagraph apodizers , 2009, Optical Engineering + Applications.

[58]  E. Cady,et al.  SHAPED PUPIL DESIGN FOR THE GEMINI PLANET IMAGER , 2009, 0905.1676.

[59]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[60]  Alexis Carlotti,et al.  Gemini Planet Imager coronagraph testbed results , 2010, Astronomical Telescopes + Instrumentation.

[61]  Gautam Vasisht,et al.  SPECKLE SUPPRESSION WITH THE PROJECT 1640 INTEGRAL FIELD SPECTROGRAPH , 2010, 1012.4016.

[62]  Jennifer E. Roberts,et al.  DISCOVERY AND CHARACTERIZATION OF A FAINT STELLAR COMPANION TO THE A3V STAR ζ VIRGINIS , 2010, 1002.1074.

[63]  Gautam Vasisht,et al.  PARALLACTIC MOTION FOR COMPANION DISCOVERY: AN M-DWARF ORBITING ALCOR , 2009, 0912.1597.

[64]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[65]  R. Soummer,et al.  TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED , 2011 .