Nanopore-based DNA sequencing sensors and CMOS readout approaches

Purpose Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used. Design/methodology/approach Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well. Findings Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays. Originality/value The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.

[1]  Rajeev Ahuja,et al.  Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. , 2010, Nano letters.

[2]  Mohammad Taherzadeh-Sani,et al.  A 170-dB $\Omega $ CMOS TIA With 52-pA Input-Referred Noise and 1-MHz Bandwidth for Very Low Current Sensing , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[3]  Andreas Hierlemann,et al.  Multi-target electrochemical biosensing enabled by integrated CMOS electronics , 2011 .

[4]  L. A. Baker,et al.  Nanopore Sensing. , 2017, Analytical chemistry.

[5]  C. Dekker,et al.  Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores , 2018, ACS nano.

[6]  Andrew J. Mason,et al.  Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[7]  H. Bayley,et al.  Multiple base-recognition sites in a biological nanopore: two heads are better than one. , 2010, Angewandte Chemie.

[8]  Kenneth L. Shepard,et al.  Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. , 2016, Nano letters.

[9]  M. Drndić,et al.  Signal and Noise in FET-Nanopore Devices. , 2018, ACS sensors.

[10]  T. Jarvie,et al.  The Next Generation Sequencing Technologies , 2011 .

[11]  Mohammad S Noor,et al.  ナノチューブの成長,整列,キラリティおよび特性における触媒液滴の双極子モーメントの可能な役割 , 2012 .

[12]  Ebrahim Ghafar-Zadeh,et al.  CMOS for high-speed nanopore DNA basecalling , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[13]  Ki-Bum Kim,et al.  Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.

[14]  Pier Andrea Traverso,et al.  A compact low-noise broadband digital picoammeter architecture , 2017 .

[15]  Jian Xu,et al.  CMOS Low Current Measurement System for Biomedical Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[16]  Marco Sampietro,et al.  A Current-Sensitive Front-End Amplifier for Nano-Biosensors with a 2MHz BW , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[17]  Marian Verhelst,et al.  A Scalable 128-Channel, Time-Multiplexed Potentiostat for Parallel Electrochemical Experiments , 2021, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  C. Dekker,et al.  Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport , 2018, Nano letters.

[19]  T. Mehmood,et al.  Electrochemical DNA biosensors: a review , 2019, Sensor Review.

[20]  Jeremy Holleman,et al.  A wideband ultra-low-current on-chip ammeter , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[21]  Mintu Porel,et al.  Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array , 2016, Proceedings of the National Academy of Sciences.

[22]  Edward H. Sargent,et al.  Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC , 2014, IEEE Journal of Solid-State Circuits.

[23]  R. Thewes,et al.  A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion , 2004, IEEE Journal of Solid-State Circuits.

[24]  Masateru Taniguchi,et al.  Decoding DNA, RNA and peptides with quantum tunnelling. , 2016, Nature nanotechnology.

[25]  Adrien Nicolaï,et al.  DNA Translocation in Nanometer Thick Silicon Nanopores. , 2015, ACS nano.

[26]  Dumitru Dumcenco,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[27]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[28]  L. Lagae,et al.  High spatial resolution nanoslit SERS for single-molecule nucleobase sensing , 2018, Nature Communications.

[29]  S. Howorka,et al.  Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG , 2014, Nature.

[30]  S. Magierowski,et al.  A 65-nm CMOS Low-Power Front-End for 3rd Generation DNA Sequencing , 2019, 2019 IEEE SENSORS.

[31]  Geoffrey Mulberry,et al.  Rapid 1024-Pixel Electrochemical Imaging at 10,000 Frames Per Second Using Monolithic CMOS Sensor and Multifunctional Data Acquisition System , 2018, IEEE Sensors Journal.

[32]  C. Dekker,et al.  Comparing Current Noise in Biological and Solid-State Nanopores , 2020, ACS nano.

[33]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[34]  William B. Dunbar,et al.  A Patch-Clamp ASIC for Nanopore-Based DNA Analysis , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[35]  M. Niederweis,et al.  Nanopore DNA sequencing with MspA , 2010, Proceedings of the National Academy of Sciences.

[36]  S. Koren,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, bioRxiv.

[37]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[38]  Hao Feng,et al.  A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[39]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[40]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[41]  Chung-Lun Hsu,et al.  A current-measurement front-end with 160dB dynamic range and 7ppm INL , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[42]  D.R.S. Cumming,et al.  The fabrication of scalable multi-sensor arrays using standard CMOS technology [chemical sensors] , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[43]  A. DateAbhijit,et al.  新しい安定剤としての両親媒性脂質Gelucire 50/13を含む脂質ナノキャリア(GeluPearl): 製造及び特性測定と経口薬物送達のための評価 , 2011 .

[44]  Stefan Howorka,et al.  Building membrane nanopores. , 2017, Nature nanotechnology.

[45]  Shi-Li Zhang,et al.  Fundamentals and potentials of solid-state nanopores: a review , 2020, Journal of Physics D: Applied Physics.

[46]  F. Sigworth Electronic Design of the Patch Clamp , 1983 .

[47]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[48]  J. Shendure,et al.  DNA sequencing at 40: past, present and future , 2017, Nature.

[49]  Francisco Serra-Graells,et al.  A 25-µW All-MOS Potentiostatic Delta-Sigma ADC for Smart Electrochemical Sensors , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[51]  Amit Meller,et al.  Progress toward ultrafast DNA sequencing using solid-state nanopores. , 2007, Clinical chemistry.

[52]  H. Bayley,et al.  Engineered transmembrane pores. , 2016, Current opinion in chemical biology.

[53]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[54]  W. Dunbar,et al.  Controlling DNA Tug-of-War in a Dual Nanopore Device. , 2018, Small.

[55]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[56]  K. Shepard,et al.  High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. , 2019, Analytica chimica acta.

[57]  Yajie Qin,et al.  A 37.37μW-Per-Cell Multifunctional Automated Nanopore Sequencing CMOS Platform with 16∗8 Biosensor Array , 2020, ISCAS.

[58]  R. Thewes,et al.  Sensor arrays for fully-electronic DNA detection on CMOS , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[59]  Zhiping Weng,et al.  Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. , 2010, Nano letters.

[60]  James Clarke,et al.  Nanopore development at Oxford Nanopore , 2016, Nature Biotechnology.

[61]  Chung-Lun Hsu,et al.  A Hybrid Semi-Digital Transimpedance Amplifier With Noise Cancellation Technique for Nanopore-Based DNA Sequencing , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[62]  M. Sampietro,et al.  Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices , 2009, IEEE Journal of Solid-State Circuits.

[63]  Swati Singh,et al.  Recent advances in sensors for early detection of pathogens causing rheumatic heart disease , 2018 .

[64]  Marco Carminati,et al.  Ultra-low-noise CMOS current preamplifier from DC to 1 MHz , 2009 .

[65]  K. Shepard,et al.  Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals. , 2019, Nano letters.

[66]  Thomas Chen,et al.  An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging , 2019, IEEE Transactions on Biomedical Circuits and Systems.

[67]  Tal Gilboa,et al.  Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam , 2018, Scientific Reports.

[68]  A. Balan,et al.  Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. , 2013, ACS nano.

[69]  Smita Y. Patel,et al.  Sequencing of human genomes with nanopore technology , 2019, Nature Communications.

[70]  Y. Korchev,et al.  Selective Sensing of Proteins Using Aptamer Functionalized Nanopore Extended Field‐Effect Transistors , 2020 .

[71]  Michael Zwolak,et al.  Electronic signature of DNA nucleotides via transverse transport. , 2004, Nano letters.

[72]  C. Dekker,et al.  Mechanical Trapping of DNA in a Double-Nanopore System. , 2016, Nano letters.

[73]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[74]  Cees Dekker,et al.  Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore , 2018, ACS nano.

[75]  S. Maier,et al.  Plasmon induced thermoelectric effect in graphene , 2018, Nature Communications.

[76]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[77]  Cees Dekker,et al.  Graphene nanodevices for DNA sequencing. , 2016, Nature nanotechnology.

[78]  K.L. Shepard,et al.  Active CMOS Sensor Array for Electrochemical Biomolecular Detection , 2008, IEEE Journal of Solid-State Circuits.

[79]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[80]  A. Errachid,et al.  ION-SENSITIVE FIELD-EFFECT TRANSISTORS FABRICATED IN A COMMERCIAL CMOS TECHNOLOGY , 1999 .

[81]  Marian Verhelst,et al.  A 64-channel, 1.1-pA-accurate On-chip Potentiostat for Parallel Electrochemical Monitoring , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[82]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[83]  C. Henry,et al.  Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. , 2018, Biosensors & bioelectronics.

[84]  David R. S. Cumming,et al.  The development of scalable sensor arrays using standard CMOS technology , 2004 .

[85]  Eugenio Culurciello,et al.  Noise Analysis and Performance Comparison of Low Current Measurement Systems for Biomedical Applications , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[86]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[87]  Zachariah C. Alex,et al.  A review: metamaterial sensors for material characterization , 2019, Sensor Review.

[88]  Chao Yang,et al.  Amperometric Electrochemical Microsystem for a Miniaturized Protein Biosensor Array , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[89]  Qing Zhao,et al.  Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. , 2018, ACS nano.

[90]  P. Grutter,et al.  Nanopore Formation via Tip‐Controlled Local Breakdown Using an Atomic Force Microscope , 2019, Small Methods.

[91]  K. Shepard,et al.  Single-channel recordings of RyR1 at microsecond resolution in CMOS-suspended membranes , 2018, Proceedings of the National Academy of Sciences.

[92]  Ebrahim Ghafar-Zadeh,et al.  Nanopore-CMOS Interfaces for DNA Sequencing , 2016, Biosensors.

[93]  Babak Hassibi,et al.  Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip , 2018, Nature Biotechnology.

[94]  Shantanu Chakrabartty,et al.  A Multichannel Femtoampere-Sensitivity Potentiostat Array for Biosensing Applications , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[95]  C. Dekker,et al.  Active Delivery of Single DNA Molecules into a Plasmonic Nanopore for Label-Free Optical Sensing , 2018, Nano letters.

[96]  J. Rasaiah,et al.  Molecular Dynamics Simulation Study of Transverse and Longitudinal Ionic Currents in Solid-State Nanopore DNA Sequencing , 2020 .

[97]  Zi Yang,et al.  A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[98]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[99]  Doris Schmitt-Landsiedel,et al.  A digital CMOS-based 24×16 sensor array platform for fully automatic electrochemical DNA detection. , 2010, Biosensors & bioelectronics.

[100]  Ronald W Davis,et al.  A System for Multiplexed Direct Electrical Detection of DNA Synthesis. , 2008, Sensors and actuators. B, Chemical.

[101]  G R Willmott,et al.  Comment on 'Modeling the conductance and DNA blockade of solid-state nanopores'. , 2012, Nanotechnology.

[102]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[103]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[104]  Barry Merriman,et al.  Progress in Ion Torrent semiconductor chip based sequencing , 2012, Electrophoresis.

[105]  Jared Roseman,et al.  Single ion channel recordings with CMOS-anchored lipid membranes. , 2013, Nano letters.

[106]  Kenneth L. Shepard,et al.  Single-Stranded DNA Translocation Recordings Through Solid-State Nanopores on Glass Chips at 10-MHz Measurement Bandwidth. , 2019, ACS nano.

[107]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[108]  Oliver K Castell,et al.  High-throughput optical sensing of nucleic acids in a nanopore array , 2015, Nature nanotechnology.

[109]  Alexander Y. Grosberg,et al.  Reply to Comment on ‘Modeling the conductance and DNA blockade of solid-state nanopores’ , 2012 .

[110]  E. Mardis DNA sequencing technologies: 2006–2016 , 2017, Nature Protocols.

[111]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Jin He,et al.  Identifying single bases in a DNA oligomer with electron tunnelling. , 2010, Nature nanotechnology.

[113]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[114]  Pengcheng Gao,et al.  Recent Advances in Solid Nanopore/Channel Analysis. , 2018, Analytical chemistry.

[115]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.