Analysis of an a posteriori error estimator for the transport equation with SN and discontinuous Galerkin discretizations
暂无分享,去创建一个
[1] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[2] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[3] Juhani Pitkäranta. Estimates for the Derivatives of Solutions to Weakly Singular Fredholm Integral Equations , 1980 .
[4] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[5] G. Richter. An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .
[6] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[7] L. H. Howell,et al. An adaptive mesh refinement algorithm for the discrete ordinates method , 1996 .
[8] J. Oden,et al. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .
[9] Slimane Adjerid,et al. A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems , 2002 .
[10] R. Baker. A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle Transport Equation , 2002 .
[11] Christian Aussourd,et al. Styx: A Multidimensional AMR SN Scheme , 2003 .
[12] G. Rimpault,et al. ERANOS 2.1 : International Code System for GEN IV Fast Reactor Analysis , 2006 .
[13] Yousry Y. Azmy,et al. Error Comparison of Diamond Difference, Nodal, and Characteristic Methods for Solving Multidimensional Transport Problems with the Discrete Ordinates Approximation , 2007 .
[14] Bo Dong,et al. Optimal Convergence of the Original DG Method for the Transport-Reaction Equation on Special Meshes , 2008, SIAM J. Numer. Anal..
[15] Ludmil Zikatanov,et al. A posteriori error estimator and AMR for discrete ordinates nodal transport methods , 2009 .
[16] L. Gastaldo,et al. HIGH-ORDER DISCRETE ORDINATE TRANSPORT IN NON-CONFORMING 2D CARTESIAN MESHES , 2009 .
[17] Jean C. Ragusa,et al. A two-mesh adaptive mesh refinement technique for SN neutral-particle transport using a higher-order DGFEM , 2010, J. Comput. Appl. Math..
[18] Damien Fournier,et al. High-order discrete ordinate transport in hexagonal geometry: A new capability in ERANOS , 2010 .