Imaging and image-based fluid transport modeling at the pore scale in geological materials : a practical introduction to the current state-of-the-art

Abstract Fluid flow and mass transport in geological materials are crucial in diverse Earth science applications. To fully understand the behavior of geological materials in this context, the pore scale properties of these materials have to be investigated and related to effective material properties. Imaging techniques are becoming ever more valuable tools to characterize the microstructure (especially in three dimensions), while numerical models to calculate transport properties based on experimental images of the microstructure are quickly maturing. The results of image-based modeling studies depend crucially on both the employed model and the quality of the pore space image on which the model runs. Given the technicality and the cross-disciplinary nature of this matter, this review aims to provide a practical and accessible introduction to both the experimental and numerical state-of-the-art, intended for students and researchers with backgrounds in experimental geo-sciences or computational sciences alike.

[1]  Martin J. Blunt,et al.  Dynamic Pore-scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions , 2014 .

[2]  S. Bakke,et al.  Pore network modelling on carbonate: a comparative study of different micro-CT network extraction methods , 2008 .

[3]  Hongkyu Yoon,et al.  Nanopore structures, statistically representative elementary volumes, and transport properties of chalk , 2013 .

[4]  Tadeusz W Patzek,et al.  Verification of a Complete Pore Network Simulator of Drainage and Imbibition , 2001 .

[5]  Albert J. Valocchi,et al.  Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport , 2015 .

[6]  James G. Berryman,et al.  Using two‐point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass , 1996 .

[7]  Anthony R. Kovscek,et al.  Permeability modification of diatomite during hot-fluid injection , 1998 .

[8]  Stephen Hillier,et al.  Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin , 1994, Clay Minerals.

[9]  Victoria Pease,et al.  Provenance of Late Carboniferous to Jurassic sandstones for southern Taimyr, Arctic Russia: A comparison of heavy mineral analysis by optical and QEMSCAN methods , 2015 .

[10]  Peter V. Coveney,et al.  Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational Grids , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[12]  Carlos Torres-Verdín,et al.  Assessing the utility of FIB-SEM images for shale digital rock physics , 2016 .

[13]  Abu Dhabi,et al.  COMPUTATION OF RELATIVE PERMEABILITY FUNCTIONS IN 3D DIGITAL ROCKS BY A FRACTIONAL FLOW APPROACH USING THE LATTICE BOLTZMANN METHOD , 2012 .

[14]  Veerle Cnudde,et al.  An evaluation of 2D‐image analysis techniques for measuring soil microporosity , 2007 .

[15]  Takashi Nishiyama,et al.  Observation of Pore Spaces and Microcracks Using a Fluorescent Technique in Some Reservoir Rocks of Oil, Gas and Geothermal Fields in the Green Tuff Region, Japan , 2000 .

[16]  Muhammad Sahimi,et al.  Flow and Transport in Porous Media and Fractured Rock - Toc , 2016 .

[17]  Goodarz Ahmadi,et al.  Computational Modeling of Fluid Flow through a Fracture in Permeable Rock , 2010 .

[18]  Peter Cloetens,et al.  A comparison of synchrotron X-ray phase contrast tomography and holotomography for non-invasive investigations of the internal anatomy of mites , 2008 .

[19]  Matthew T. Balhoff,et al.  Mesoscale and Hybrid Models of Fluid Flow and Solute Transport , 2015 .

[20]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[21]  János Urai,et al.  Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography , 2015 .

[22]  R. Lenormand,et al.  Mechanisms of the displacement of one fluid by another in a network of capillary ducts , 1983, Journal of Fluid Mechanics.

[23]  Tetsuo Sakamoto,et al.  Development of ion and electron dual focused beam apparatus for high spatial resolution three-dimensional microanalysis of solid materials , 1998 .

[24]  Veerle Cnudde,et al.  Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography , 2013 .

[25]  R. Wirth,et al.  Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale , 2009 .

[26]  Michael Plötze,et al.  Weathering and mineralogical evolution in a high Alpine soil chronosequence: A combined approach using SEM–EDX, cathodoluminescence and Nomarski DIC microscopy , 2012 .

[27]  Tapan Mukerji,et al.  Digital rock physics benchmarks - part II: Computing effective properties , 2013, Comput. Geosci..

[28]  Martin J. Blunt,et al.  The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis , 2012 .

[29]  W. E. Soll,et al.  Pore level imaging of fluid transport using synchrotron X-ray microtomography , 1996 .

[30]  Veerle Cnudde,et al.  Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material , 2014 .

[31]  Rafael Fort,et al.  Characterization of patinas by means of microscopic techniques , 2007 .

[32]  Stefan M. Luthi,et al.  Quantitative Characterization of Carbonate Pore Systems by Digital Image Analysis , 1998 .

[33]  Stanley V. Margolis,et al.  Endolithic Algae and Micrite Envelope Formation in Bahamian Oölites as Revealed by Scanning Electron Microscopy , 1971 .

[34]  M. Bayani Cardenas,et al.  Three‐dimensional vortices in single pores and their effects on transport , 2008 .

[35]  I. Fatt The Network Model of Porous Media , 1956 .

[36]  Kejian Wu,et al.  SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Jan M. Nordbotten,et al.  Effect of Mean Network Coordination Number on Dispersivity Characteristics , 2012, Transport in Porous Media.

[38]  Mohammad Piri,et al.  Pore-scale modeling of dispersion in disordered porous media. , 2011, Journal of contaminant hydrology.

[39]  Albert J. Valocchi,et al.  Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method , 2013, Transport in Porous Media.

[40]  Martin J. Blunt,et al.  Pore‐scale imaging of geological carbon dioxide storage under in situ conditions , 2013 .

[41]  János Urai,et al.  Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations , 2009 .

[42]  Mark A. Knackstedt,et al.  Pore scale characterization of carbonates at multiple scales: integration of micro-CT, BSEM and FIBSEM , 2010 .

[43]  P. Meakin,et al.  Computer simulation of two‐phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method , 2005 .

[44]  Dorthe Wildenschild,et al.  Pore-scale observations of supercritical CO2 drainage in Bentheimer sandstone by synchrotron x-ray imaging , 2014 .

[45]  Nasiru Idowu,et al.  Effects of Segmentation and Skeletonization Algorithms on Pore Networks and Predicted Multiphase-Transport Properties of Reservoir-Rock Samples , 2014 .

[46]  Holger Ott,et al.  Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow , 2014, Water resources research.

[47]  V. Cnudde,et al.  Software tools for quantification of X-ray microtomography at the UGCT , 2007 .

[48]  E. Maire,et al.  In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics , 2010 .

[49]  Christoph H. Arns,et al.  Second-order analysis by variograms for curvature measures of two-phase structures , 2005 .

[50]  Jeff Gelb,et al.  Sub-micron resolution CT for failure analysis and process development , 2008 .

[51]  Mary F. Wheeler,et al.  Quantifying the Representative Size in Porous Media , 2014, Transport in Porous Media.

[52]  P. Withers,et al.  Quantitative X-ray tomography , 2014 .

[53]  Catherine A. Peters,et al.  Accessibilities of reactive minerals in consolidated sedimentary rock: An imaging study of three sandstones , 2009 .

[54]  Jeffrey D Hyman,et al.  Heterogeneities of flow in stochastically generated porous media. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Matthew D. Jackson,et al.  Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. , 2002 .

[56]  William M. Harris,et al.  Focused ion beam preparation of samples for X-ray nanotomography. , 2012, Journal of synchrotron radiation.

[57]  F. Marone,et al.  Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone , 2014 .

[58]  Carl I. Steefel,et al.  Measurement of accessible reactive surface area in a sandstone, with application to CO2 mineralization , 2012 .

[59]  C. L. Farmer Upscaling: a review , 2002 .

[60]  Kees Joost Batenburg,et al.  DART: A Practical Reconstruction Algorithm for Discrete Tomography , 2011, IEEE Transactions on Image Processing.

[61]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  Guido Gerig,et al.  Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data , 2014, Lecture Notes in Computer Science.

[63]  Rajandrea Sethi,et al.  Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[65]  Xiaorong Luo,et al.  Diagenetic history of tight sandstones and gas entrapment in the Yulin Gas Field in the central area of the Ordos Basin, China , 2009 .

[66]  Ayaz Mehmani,et al.  The effect of microporosity on transport properties in porous media , 2014 .

[67]  Clinton S. Willson,et al.  Comparison of Network Generation Techniques for Unconsolidated Porous Media , 2003 .

[68]  Robert Sok,et al.  ANALYSIS OF ROCK MICROSTRUCTURE USING HIGH- RESOLUTION X-RAY TOMOGRAPHY , 2006 .

[69]  L Van Hoorebeke,et al.  Holistic approach of pre-existing flaws on the decay of two limestones. , 2013, The Science of the total environment.

[70]  Arash Aghaei,et al.  Direct pore-to-core up-scaling of displacement processes: Dynamic pore network modeling and experimentation , 2015 .

[71]  M. Blunt Flow in porous media — pore-network models and multiphase flow , 2001 .

[72]  Peyman Mostaghimi,et al.  Insights into non-Fickian solute transport in carbonates , 2013, Water resources research.

[73]  I. Ginzburg Comment on “An improved gray Lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: Intrinsic links between LBE Brinkman schemes , 2016 .

[74]  Veerle Cnudde,et al.  In situ monitoring of mineral waste carbonation under high CO₂ pressure , 2013 .

[75]  Dongxiao Zhang,et al.  Unified lattice Boltzmann method for flow in multiscale porous media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  T Takeda,et al.  Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. , 1995, Academic radiology.

[77]  P. Meakin,et al.  Modeling and simulation of pore‐scale multiphase fluid flow and reactive transport in fractured and porous media , 2009 .

[78]  Timothy D. Scheibe,et al.  Pore‐scale and multiscale numerical simulation of flow and transport in a laboratory‐scale column , 2015 .

[79]  Antti I. Koponen,et al.  Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  J D Hyman,et al.  Relationship between pore size and velocity probability distributions in stochastically generated porous media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Kenneth Stuart Sorbie,et al.  Representation of multiscale heterogeneity via multiscale pore networks , 2013 .

[82]  K R Mecke,et al.  Euler-Poincaré characteristics of classes of disordered media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  F. De Carlo,et al.  In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys , 2010 .

[84]  E. W. Llewellin,et al.  LBflow: An extensible lattice Boltzmann framework for the simulation of geophysical flows. Part I: theory and implementation , 2010, Comput. Geosci..

[85]  C. Pan,et al.  Lattice‐Boltzmann simulation of two‐phase flow in porous media , 2004 .

[86]  Marc Prat,et al.  Pore Network Simulation of Evaporation of a Binary Liquid from a Capillary Porous Medium , 2000 .

[87]  Pierre M. Adler,et al.  Pore network modelling to determine the transport properties in presence of a reactive fluid: From pore to reservoir scale , 2013 .

[88]  V. Cnudde,et al.  4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. , 2012, The Science of the total environment.

[89]  Shuguang Li,et al.  Quantitative damage evaluation of concrete suffered freezing–thawing by DIP technique , 2014 .

[90]  C. Steefel,et al.  Pore-scale controls on calcite dissolution rates from flow-through laboratory and numerical experiments. , 2014, Environmental science & technology.

[91]  O. Bunk,et al.  Ptychographic X-ray computed tomography at the nanoscale , 2010, Nature.

[92]  Martin J. Blunt,et al.  Pore-Scale Modelling of Rate Effects in Waterflooding , 2010 .

[93]  Eric D. Wachsman,et al.  Microstructure and Connectivity Quantification of Complex Composite Solid Oxide Fuel Cell Electrode Three-Dimensional Networks , 2011 .

[94]  M. J. Blunt,et al.  Time-of-Flight Distributions and Breakthrough Curves in Heterogeneous Porous Media Using a Pore-Scale Streamline Tracing Algorithm , 2015, Transport in Porous Media.

[95]  H. C. Gran Fluorescent liquid replacement technique. A means of crack detection and water:Binder ratio determination in high strength concretes , 1995 .

[96]  Peyman Mostaghimi,et al.  Porosity and permeability characterization of coal: A micro-computed tomography study , 2016 .

[97]  Veerle Cnudde,et al.  Recent Micro-CT Scanner Developments at UGCT , 2014 .

[98]  Qinjun Kang,et al.  Lattice Boltzmann model for crystal growth from supersaturated solution , 2004 .

[99]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[100]  Paul Meakin,et al.  A 4D Synchrotron X-Ray-Tomography Study of the Formation of Hydrocarbon- Migration Pathways in Heated Organic-Rich Shale , 2013 .

[101]  S. J. Milne,et al.  Characterization of dentine structure in three dimensions using FIB‐SEM , 2010, Journal of microscopy.

[102]  M. Blunt,et al.  Pore-scale imaging and modelling , 2013 .

[103]  Jeremy P. Ingham,et al.  Geomaterials Under the Microscope , 2010 .

[104]  Haitao Xue,et al.  Microstructural characteristics of the Cretaceous Qingshankou Formation shale, Songliao Basin , 2013 .

[105]  Amir Raoof,et al.  PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media , 2013, Comput. Geosci..

[106]  K Schladitz,et al.  Quantitative micro‐CT , 2011, Journal of microscopy.

[107]  H. S. Fogler,et al.  Biomass evolution in porous media and its effects on permeability under starvation conditions. , 2000, Biotechnology and bioengineering.

[108]  Jeff Gelb,et al.  Sub-micron X-ray Computed Tomography for Non-Destructive 3D Visualization and Analysis , 2009, Microscopy and Microanalysis.

[109]  Kim F. Ferris,et al.  Lagrangian particle model for multiphase flows , 2009, Comput. Phys. Commun..

[110]  Parviz Soroushian,et al.  Specimen preparation and image processing and analysis techniques for automated quantification of concrete microcracks and voids , 2003 .

[111]  Veerle Cnudde,et al.  Description of a new fossil Pseudogarypus (Pseudoscorpiones: Pseudogarypidae) with the use of X-ray micro-CT to penetrate opaque amber , 2006 .

[112]  Chris Pudney,et al.  Distance-Ordered Homotopic Thinning: A Skeletonization Algorithm for 3D Digital Images , 1998, Comput. Vis. Image Underst..

[113]  Brian J. Suchomel,et al.  Network Model of Flow, Transport and Biofilm Effects in Porous Media , 1998 .

[114]  Mark A. Knackstedt,et al.  Effect of Network Topology on Relative Permeability , 2004 .

[115]  M. Tuller,et al.  Segmentation of X‐ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures , 2009 .

[116]  Martin J Blunt,et al.  Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. , 2015, Environmental science & technology.

[117]  A. Georgiadis,et al.  Pore-scale micro-computed-tomography imaging: nonwetting-phase cluster-size distribution during drainage and imbibition. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  Frieder Enzmann,et al.  Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock. , 2012, Journal of contaminant hydrology.

[119]  Chun Liu,et al.  The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China , 2014 .

[120]  Vahid Joekar-Niasar,et al.  Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media , 2010 .

[121]  William R B Lionheart,et al.  4D-CT reconstruction with unified spatial-temporal patch-based regularization , 2015 .

[122]  Xiaofan Yang,et al.  Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations , 2013 .

[123]  J.G.M. van Mier,et al.  How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy? , 2002 .

[124]  Shouxiang Ma,et al.  Effect of contact angle on drainage and imbibition in regular polygonal tubes , 1996 .

[125]  H. Krapp,et al.  In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor , 2014, PLoS biology.

[126]  R. Al-Raoush,et al.  Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems , 2005 .

[127]  Ivan Lunati,et al.  Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy , 2013 .

[128]  Mats Larsbo,et al.  Imaging and quantification of preferential solute transport in soil macropores , 2014 .

[129]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[130]  Peter Cloetens,et al.  Phase Contrast X-Ray Synchrotron Imaging: Opening Access to Fossil Inclusions in Opaque Amber , 2008, Microscopy and Microanalysis.

[131]  Alexander G. Schwing,et al.  From connected pathway flow to ganglion dynamics , 2015 .

[132]  Philip J. Withers,et al.  Effects of Grain and Pore Size on Salt Precipitation During Evaporation from Porous Media , 2015, Transport in Porous Media.

[133]  Houzheng Wu,et al.  Subsurface damage analysis by TEM and 3D FIB crack mapping in alumina and alumina/5vol.%SiC nanocomposites , 2003 .

[134]  Ali Q. Raeini,et al.  The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation , 2016 .

[135]  Noel Hopkins,et al.  Alternative methods for determination of composition and porosity in abradable materials , 2006 .

[136]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[137]  H. Naji,et al.  Simulating flows in multi-layered and spatially-variable permeability media via a new Gray Lattice Boltzmann model , 2015 .

[138]  Luís M.O. Sousa,et al.  Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites , 2005 .

[139]  I. F. Macdonald,et al.  Multi-orientation scanning : a necessity in the identification of pore necks in porous media by 3-D computer reconstruction from serial section data , 1994 .

[140]  Kyungjoo Kim,et al.  Intercomparison of 3D pore-scale flow and solute transport simulation methods , 2016 .

[141]  S. Youssef,et al.  From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[142]  Christian G. Schroer,et al.  Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes , 2012 .

[143]  William T. Sloan,et al.  Characterization of nanoparticle transport through quartz and dolomite gravels by magnetic resonance imaging , 2015, International Journal of Environmental Science and Technology.

[144]  Veerle Cnudde,et al.  Characterization of composition and structure of clay minerals in sandstone with ptychographic X-ray nanotomography , 2015 .

[145]  R. Armstrong,et al.  Critical capillary number: Desaturation studied with fast X‐ray computed microtomography , 2014 .

[146]  Veerle Cnudde,et al.  Monitoring of stainless-steel slag carbonation using X-ray computed microtomography. , 2014, Environmental science & technology.

[147]  Maik Stiebler,et al.  Joint numerical microscale simulations of multiphase flow and NMR relaxation behavior in porous media using Lattice Boltzmann methods , 2014 .

[148]  Teresa Rivas,et al.  Weathering of granitic rocks by chlorides: effect of the nature of the solution on weathering morphology , 2003 .

[149]  Nasiru Idowu,et al.  Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks , 2012, Transport in Porous Media.

[150]  Changhong Hu,et al.  Elucidating the Role of Interfacial Tension for Hydrological Properties of Two-Phase Flow in Natural Sandstone by an Improved Lattice Boltzmann Method , 2014, Transport in Porous Media.

[151]  Norman R. Morrow,et al.  The Effects of Surface Roughness On Contact: Angle With Special Reference to Petroleum Recovery , 1975 .

[152]  M. Blunt,et al.  Network extraction from sandstone and carbonate pore space images , 2007 .

[153]  Ali Ebrahimi,et al.  Genetic algorithm-based pore network extraction from micro-computed tomography images , 2013 .

[154]  Qinjun Kang,et al.  Mesoscopic Modeling of Multiphysicochemical Transport Phenomena in Porous Media , 2009 .

[155]  Vahid Joekar-Niasar,et al.  Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling , 2010, Journal of Fluid Mechanics.

[156]  Kenneth Stuart Sorbie,et al.  Efficient extraction of networks from three‐dimensional porous media , 2007 .

[157]  R. Lewis,et al.  Medical phase contrast x-ray imaging: current status and future prospects. , 2004, Physics in medicine and biology.

[158]  B. Inkson,et al.  Nanoscale tomography in materials science , 2007 .

[159]  G. Silversmit,et al.  Multi-disciplinary characterization and monitoring of sandstone (Kandla Grey) under different external conditions , 2013 .

[160]  Marcel G. Schaap,et al.  Comparison of pressure‐saturation characteristics derived from computed tomography and lattice Boltzmann simulations , 2007 .

[161]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[162]  Erwan Plougonven,et al.  Optimal removal of topological artefacts in microtomographic images of porous materials , 2011 .

[163]  C. Noiriel Resolving Time-dependent Evolution of Pore-Scale Structure, Permeability and Reactivity using X-ray Microtomography , 2015 .

[164]  János Urai,et al.  Nanoscale imaging of pore‐scale fluid‐fluid‐solid contacts in sandstone , 2015 .

[165]  S. Zaleski,et al.  Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow , 1994 .

[166]  V. Cnudde,et al.  A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling. , 2015, Environmental science & technology.

[167]  Holger Averdunk,et al.  IMPROVED PORE NETWORK EXTRACTION METHODS , 2005 .

[168]  Takeshi Tsuji,et al.  Impact of interfacial tension on residual CO2 clusters in porous sandstone , 2015 .

[169]  Alexandre M. Tartakovsky,et al.  Dissipative particle dynamics model for colloid transport in porous media , 2013 .

[170]  Yelena Sholokhova,et al.  Network Flow Modeling via Lattice-Boltzmann Based Channel Conductance. Prediction of Relative Permeability in Primary Drainage. , 2009 .

[171]  Paul S. Hammond,et al.  A Dynamic Pore Network Model for Oil Displacement by Wettability-Altering Surfactant Solution , 2012, Transport in Porous Media.

[172]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[173]  Lynn F. Gladden,et al.  Simulation of packed bed reactors using lattice Boltzmann methods , 2005 .

[174]  Martin J. Blunt,et al.  Microscale solute transport and precipitation in complex rock during drying , 2014 .

[175]  Amir Raoof,et al.  Upscaling Transport of Adsorbing Solutes in Porous Media: Pore‐Network Modeling , 2010 .

[176]  J. J. Macklin,et al.  Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution , 2011, Proceedings of the National Academy of Sciences.

[177]  Jingsheng Ma,et al.  An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media , 2013 .

[178]  W. B. Hempkins,et al.  Scanning electron microscope study of pore systems in rocks , 1971 .

[179]  Kenneth Stuart Sorbie,et al.  Stochastic Pore Network Generation from 3D Rock Images , 2012, Transport in Porous Media.

[180]  S. Mitra,et al.  Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). , 2011, Micron.

[181]  Hans-Jörg Vogel,et al.  Quantitative morphology and network representation of soil pore structure , 2001 .

[182]  Edo S. Boek,et al.  Quantitative determination of molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using lattice Boltzmann simulations , 2013 .

[183]  Andrew Kingston,et al.  DYNAMIC X-RAY MICRO-TOMOGRAPHY FOR REAL TIME IMAGING OF DRAINAGE AND IMBIBITION PROCESSES AT THE PORE SCALE , 2011 .

[184]  V. Cnudde,et al.  High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials , 2008 .

[185]  Denys Breysse,et al.  Image analysis for the automated study of microcracks in concrete , 2001 .

[186]  Michael A. Celia,et al.  Pore‐scale modeling and upscaling of nonaqueous phase liquid mass transfer , 2001 .

[187]  Dorthe Wildenschild,et al.  Efficiently engineering pore-scale processes: The role of force dominance and topology during nonwetting phase trapping in porous media , 2015 .

[188]  S. Youssef,et al.  Assessment of the two relaxation time Lattice‐Boltzmann scheme to simulate Stokes flow in porous media , 2012 .

[189]  Diederik Jacques,et al.  A versatile pore-scale multicomponent reactive transport approach based on lattice Boltzmann method: Application to portlandite dissolution , 2014 .

[190]  M F Rajewsky,et al.  Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography. , 1999, Biophysical journal.

[191]  Ulrich Wagner,et al.  Fast X-ray imaging at beamline I13L at Diamond Light Source , 2013 .

[192]  David Wilkinson,et al.  Invasion percolation: a new form of percolation theory , 1983 .

[193]  D. Wildenschild,et al.  X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems , 2013 .

[194]  Martin J Blunt,et al.  Pore-network extraction from micro-computerized-tomography images. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[195]  C. Spiers,et al.  Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions , 2012 .

[196]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[197]  N. Prakongkep,et al.  SEM image analysis for characterization of sand grains in Thai paddy soils , 2010 .

[198]  Albert J. Valocchi,et al.  Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model , 2014 .

[199]  Kenneth R. N. Anthony,et al.  ReefTemp: An interactive monitoring system for coral bleaching using high‐resolution SST and improved stress predictors , 2008 .

[200]  Stig Bakke,et al.  Simulation of Two-Phase Flow in Reservoir Rocks Using a Lattice Boltzmann Method , 2010 .

[201]  M N Partl,et al.  Investigation of porous asphalt microstructure using optical and electron microscopy , 2010, Journal of microscopy.

[202]  T. Patzek,et al.  Shape Factor and Hydraulic Conductance in Noncircular Capillaries. , 2001, Journal of colloid and interface science.

[203]  Karsten E. Thompson,et al.  Application of a New Grain-Based Reconstruction Algorithm to Microtomography Images for Quantitative Characterization and Flow Modeling , 2008 .

[204]  M. Blunt,et al.  Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media. , 2015, Journal of contaminant hydrology.

[205]  Andrea Parmigiani,et al.  A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation , 2014 .

[206]  Olivier Lerat,et al.  Impact of Diagenetic Alterations on the Petrophysical and Multiphase Flow Properties of Carbonate Rocks Using a Reactive Pore Network Modeling Approach , 2012 .

[207]  C. A. Baldwin,et al.  Determination and Characterization of the Structure of a Pore Space from 3D Volume Images , 1996 .

[208]  Benoit Recur,et al.  Improving dynamic tomography, through Maximum a posteriori estimation , 2014, Optics & Photonics - Optical Engineering + Applications.

[209]  Edo S. Boek,et al.  Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries , 2010, Comput. Math. Appl..

[210]  Trond Varslot,et al.  IMAGE REGISTRATION: ENHANCING AND CALIBRATING X-RAY MICRO-CT IMAGING , 2008 .

[211]  Todd Arbogast,et al.  A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .

[212]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[213]  Daniel H. Rothman,et al.  Lattice-Boltzmann simulations of flow through Fontainebleau sandstone , 1995 .

[214]  A. Neville How closely can we determine the water-cement ratio of hardened concrete? , 2003 .

[215]  Bruce J. Palmer,et al.  Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media , 2013 .

[216]  Ali Q. Raeini,et al.  Numerical Modelling of Sub-pore Scale Events in Two-Phase Flow Through Porous Media , 2013, Transport in Porous Media.

[217]  E. Nickel,et al.  A useful new technique for mineralogy; the backscattered-electron/low vacuum mode of SEM operation , 1979 .

[218]  M. Longman,et al.  Diagenesis of Cretaceous limestones in the Edwards aquifer system of south-central Texas: A scanning electron microscope study , 1978 .

[219]  Huilin Xing,et al.  Parallel Lattice Boltzmann Computing and Applications in Core Sample Feature Evaluation , 2014, Transport in Porous Media.

[220]  K. S. Schmid,et al.  Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media , 2012 .

[221]  Qinjun Kang,et al.  Taxila LBM: a parallel, modular lattice Boltzmann framework for simulating pore-scale flow in porous media , 2014, Computational Geosciences.

[222]  Ali Q. Raeini,et al.  Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[223]  W. B. Lindquist,et al.  Investigating 3D geometry of porous media from high resolution images , 1999 .

[224]  Peter Cloetens,et al.  Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography , 2009, Proceedings of the National Academy of Sciences.

[225]  Geoffrey E. Lloyd,et al.  Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques , 1987, Mineralogical Magazine.

[226]  S. Bryant,et al.  A level set method for determining critical curvatures for drainage and imbibition. , 2006, Journal of colloid and interface science.

[227]  Joanne T. Fredrich,et al.  Predicting macroscopic transport properties using microscopic image data , 2005 .

[228]  Ali Q. Raeini,et al.  Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images , 2015 .

[229]  Stefan Jacobsen,et al.  High Strength Concrete-Freeze Thaw Testing and Cracking , 1995 .

[230]  Hans-Jörg Vogel,et al.  Predicting Solute Transport in Structured Soil Using Pore Network Models , 2011 .

[231]  Amir Raoof,et al.  A New Method for Generating Pore-Network Models of Porous Media , 2010 .

[232]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[233]  Roger Wepf,et al.  On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay , 2011 .

[234]  K. Nugent Coherent methods in the X-ray sciences , 2009, 0908.3064.

[235]  Kenneth Stuart Sorbie,et al.  3D Stochastic Modelling of Heterogeneous Porous Media – Applications to Reservoir Rocks , 2006 .

[236]  Haibo Huang,et al.  Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[237]  Manuel Guizar-Sicairos,et al.  Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating , 2013, Scientific Reports.

[238]  Norman R. Morrow,et al.  Capillary behavior of a perfectly wetting liquid in irregular triangular tubes , 1991 .

[239]  F Busch,et al.  X-ray microtomography (microCT) using phase contrast for the investigation of organic matter. , 1997, Journal of computer assisted tomography.

[240]  Erik H. Saenger,et al.  Synchrotron-based X-ray tomographic microscopy for rock physics investigations , 2013 .

[241]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[242]  Veerle Cnudde,et al.  Crystallization of hydrated and anhydrous salts in porous limestone resolved by synchrotron X-ray microtomography , 2014 .

[243]  Alex Furman,et al.  A Channel Network Model as a Framework for Characterizing Variably Saturated Flow in Biofilm‐Affected Soils , 2013 .

[244]  Edo S. Boek,et al.  Multiphase flow and reactive transport at the pore scale using lattice-Boltzmann computer simulations , 2014 .

[245]  Manuel Guizar-Sicairos,et al.  Characterization of carbon fibers using X-ray phase nanotomography , 2014 .

[246]  B Münch,et al.  Focussed ion beam nanotomography reveals the 3D morphology of different solid phases in hardened cement pastes , 2011, Journal of microscopy.

[247]  O. Bunk,et al.  X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution , 2014, Scientific Reports.

[248]  T Takeda,et al.  Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation--comparative specimen study with optical microscopy. , 2000, Radiology.

[249]  Pierre Régnier,et al.  A reactive transport modeling approach to simulate biogeochemical processes in pore structures with pore-scale heterogeneities , 2012, Environ. Model. Softw..

[250]  Allen G. Hunt,et al.  Percolation Theory for Flow in Porous Media , 2005 .

[251]  A. Kingston,et al.  Dynamic tomography with a priori information. , 2011, Applied optics.

[252]  Christoph H. Arns,et al.  Techniques in helical scanning, dynamic imaging and image segmentation for improved quantitative analysis with X-ray micro-CT , 2014 .

[253]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[254]  P. Meakin,et al.  Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics , 2006 .

[255]  Liang,et al.  Geometric and Topological Analysis of Three-Dimensional Porous Media: Pore Space Partitioning Based on Morphological Skeletonization. , 2000, Journal of colloid and interface science.

[256]  Fred L. Bookstein,et al.  [Size and Shape Spaces for Landmark Data in Two Dimensions]: Rejoinder , 1986 .

[257]  Jianhui Yang,et al.  A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications , 2013, Comput. Math. Appl..

[258]  Olivier Monga,et al.  Extraction of three-dimensional soil pore space from microtomography images using a geometrical approach , 2011 .

[259]  Martin J. Blunt,et al.  Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates , 2014 .

[260]  Ellen Ivers-Tiffée,et al.  Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling , 2011 .

[261]  Michael M. Reddy,et al.  Limestone Characterization to Model Damage from Acidic Precipitation: Effect of Pore Structure on Mass Transfer , 1996 .

[262]  Vanessa L. Bailey,et al.  A Unified Multiscale Model for Pore‐ScaleFlow Simulations in Soils , 2014 .

[263]  Muhammad Sahimi,et al.  The Effect of Asphalt Precipitation on Flow Behavior and Production of a Fractured Carbonate Oil Reservoir During Gas Injection , 2000 .

[264]  T. W. Patzek,et al.  Regular ArticleShape Factor and Hydraulic Conductance in Noncircular Capillaries: I. One-Phase Creeping Flow , 2001 .

[265]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[266]  Mark A. Knackstedt,et al.  The effect of displacement rate on imbibition relative permeability and residual saturation , 2006 .

[267]  W. B. Lindquist,et al.  Medial axis analysis of void structure in three-dimensional tomographic images of porous media , 1996 .

[268]  S. Bakke,et al.  3-D Pore-Scale Modelling of Sandstones and Flow Simulations in the Pore Networks , 1997 .

[269]  S. Reed Electron Microprobe Analysis and Scanning Electron Microscopy in Geology , 1996 .

[270]  Veerle Cnudde,et al.  Real‐time visualization of Haines jumps in sandstone with laboratory‐based microcomputed tomography , 2015 .

[271]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[272]  Barbara Lubelli,et al.  Cryo-FIB-SEM and MIP study of porosity and pore size distribution of bentonite and kaolin at different moisture contents , 2013 .

[273]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[274]  G. Pereira,et al.  Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[275]  Takashi Nishiyama,et al.  Identification of pore spaces and microcracks using fluorescent resins , 1994 .

[276]  Martin J. Blunt,et al.  A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone , 2000 .

[277]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[278]  Qinjun Kang,et al.  Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media , 2006 .

[279]  Veerle Cnudde,et al.  Three-Dimensional Analysis of High-Resolution X-Ray Computed Tomography Data with Morpho+ , 2011, Microscopy and Microanalysis.

[280]  Jason E. Heath,et al.  Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior , 2011 .

[281]  L Van Hoorebeke,et al.  EDART, a discrete algebraic reconstructing technique for experimental data obtained with high resolution computed tomography. , 2014, Journal of X-ray science and technology.

[282]  Martin J. Blunt,et al.  Capillary trapping in sandstones and carbonates: Dependence on pore structure , 2012 .

[283]  O. Bunk,et al.  Quantitative x-ray phase nanotomography , 2012 .

[284]  Karsten E. Thompson,et al.  Effect of Network Structure on Characterization and Flow Modeling Using X-ray Micro-Tomography Images of Granular and Fibrous Porous Media , 2011 .

[285]  Arash Rabbani,et al.  An automated simple algorithm for realistic pore network extraction from micro-tomography images , 2014 .

[286]  Robert J. Flatt,et al.  FIB-Nanotomography of Particulate Systems—Part II: Particle Recognition and Effect of Boundary Truncation , 2006 .

[287]  Mayank Tyagi,et al.  Prediction of Non-Darcy Coefficients for Inertial Flows Through the Castlegate Sandstone Using Image-Based Modeling , 2012, Transport in Porous Media.

[288]  Peter K. Kitanidis,et al.  Pore‐scale modeling of biological clogging due to aggregate expansion: A material mechanics approach , 2001 .

[289]  Emanuela Colombo,et al.  Direct numerical simulation of fully saturated flow in natural porous media at the pore scale: a comparison of three computational systems , 2015, Computational Geosciences.

[290]  Michael A. Celia,et al.  Trapping and hysteresis in two‐phase flow in porous media: A pore‐network study , 2013 .

[291]  O. Vizika,et al.  QUANTITATIVE 3D CHARACTERISATION OF THE PORE SPACE OF REAL ROCKS: IMPROVED µ-CT RESOLUTION AND PORE EXTRACTION METHODOLOGY , 2007 .

[292]  S. M. Hassanizadeh,et al.  Analysis of Fundamentals of Two-Phase Flow in Porous Media Using Dynamic Pore-Network Models: A Review , 2012 .

[293]  Martin J. Blunt,et al.  Computations of Absolute Permeability on Micro-CT Images , 2012, Mathematical Geosciences.

[294]  Tanya M. Smith,et al.  Dental evidence for ontogenetic differences between modern humans and Neanderthals , 2010, Proceedings of the National Academy of Sciences.

[295]  Zuleima T. Karpyn,et al.  Relative permeability of homogenous‐wet and mixed‐wet porous media as determined by pore‐scale lattice Boltzmann modeling , 2014 .

[296]  Knut-Andreas Lie,et al.  On the Importance of the Stokes-Brinkman Equations for Computing Effective Permeability in Karst Reservoirs , 2011 .

[297]  Manuel Guizar-Sicairos,et al.  Density mapping of hardened cement paste using ptychographic X-ray computed tomography , 2013 .

[298]  Veerle Cnudde,et al.  Fast time resolved micro-CT imaging: visualizing dynamic pore scale processes at high resolution , 2015 .

[299]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Trans. Vis. Comput. Graph..

[300]  D. Bauer,et al.  HIGH RESOLUTION µ-CT COMBINED TO NUMERICAL MODELS TO ASSESS ELECTRICAL PROPERTIES OF BIMODAL CARBONATES , 2008 .

[301]  Alexander Panchenko,et al.  Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics , 2016, J. Comput. Phys..

[302]  K. Sorbie,et al.  Efficient flow and transport simulations in reconstructed 3D pore geometries , 2010 .

[303]  A. Bravin,et al.  Applications of X-ray synchrotron microtomography for non-destructive 3 D studies of paleontological specimens , 2006 .

[304]  L. Mancini,et al.  Pore3D: A software library for quantitative analysis of porous media , 2010 .

[305]  O. Bunk,et al.  High-Resolution Scanning X-ray Diffraction Microscopy , 2008, Science.

[306]  A. Hartmaier,et al.  A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas , 2016 .

[307]  W. B. Lindquist,et al.  Upscaling geochemical reaction rates accompanying acidic CO2‐saturated brine flow in sandstone aquifers , 2011 .

[308]  W. Brent Lindquist Quantitative analysis of three-dimensional x-ray tomographic images , 2002, Optics + Photonics.

[309]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[310]  Grzegorz Rzepa,et al.  Erratum to: Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment , 2014, Environmental Science and Pollution Research.

[311]  M. Curtis,et al.  Development of organic porosity in the Woodford Shale with increasing thermal maturity , 2012 .

[312]  Martin J. Blunt,et al.  Simulation of Flow and Dispersion on Pore-Space Images , 2012 .

[313]  Hari S. Viswanathan,et al.  Pore Scale Modeling of Reactive Transport Involved in Geologic CO2 Sequestration , 2010 .

[314]  Yannis C Yortsos,et al.  Pore-network study of the characteristic periods in the drying of porous materials. , 2006, Journal of colloid and interface science.

[315]  T. Patzek,et al.  Pore space morphology analysis using maximal inscribed spheres , 2006 .

[316]  Mark A. Knackstedt,et al.  Effect of network topology on two-phase imbibition relative permeability , 2007 .

[317]  Mohammad Piri,et al.  Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[318]  Christoph H. Arns,et al.  PORE-LEVEL VALIDATION OF REPRESENTATIVE PORE NETWORKS OBTAINED FROM MICRO-CT IMAGES , 2007 .

[319]  Mark A. Knackstedt,et al.  Direct and Stochastic Generation of Network Models from Tomographic Images; Effect of Topology on Residual Saturations , 2002 .

[320]  Tadeusz W Patzek,et al.  Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock , 2004 .

[321]  M. Celia,et al.  Upscaling geochemical reaction rates using pore-scale network modeling , 2006 .

[322]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[323]  M. Rappaz,et al.  In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys , 2009 .

[324]  Kenneth Stuart Sorbie,et al.  Two-Phase Pore-Network Modelling: Existence of Oil Layers During Water Invasion , 2009 .

[325]  Y. Keehm,et al.  Permeability prediction from thin sections: 3D reconstruction and Lattice‐Boltzmann flow simulation , 2004 .

[326]  S. Bakke,et al.  Process Based Reconstruction of Sandstones and Prediction of Transport Properties , 2002 .

[327]  D. Bauer,et al.  Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography , 2012, Transport in Porous Media.

[328]  A. Leijnse,et al.  Transport modeling of nonlinearly adsorbing solutes in physically heterogeneous pore networks , 2005 .

[329]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[330]  A. Bronnikov,et al.  Theory of quantitative phase-contrast computed tomography. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[331]  Mikkel Jørgensen,et al.  Enabling Flexible Polymer Tandem Solar Cells by 3D Ptychographic Imaging , 2015 .

[332]  Veerle Cnudde,et al.  Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and perspectives on the future , 2016 .

[333]  Maurizio Santini,et al.  Pore-scale simulation of laminar flow through porous media , 2014 .

[334]  Sebastian Geiger,et al.  Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media , 2015, Proceedings of the National Academy of Sciences.

[335]  Mark F. Adams,et al.  High-Resolution Simulation of Pore-Scale Reactive Transport Processes Associated with Carbon Sequestration , 2014, Computing in Science & Engineering.

[336]  E. Boek,et al.  Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution , 2016 .

[337]  Rainer Heintzmann,et al.  Breaking the resolution limit in light microscopy. , 2006, Methods in cell biology.

[338]  Harlan W. Stockman Lattice Boltzmann Method for Calculating Fluid Flow and Dispersion in Porous and Fractured Media , 2006 .

[339]  Bastien Chopard,et al.  Pore-scale mass and reactant transport in multiphase porous media flows , 2011, Journal of Fluid Mechanics.

[340]  Knut-Andreas Lie,et al.  On the Stokes-Brinkman Equations for Modeling Flow in Carbonate Reservoirs , 2010 .

[341]  Zuleima T. Karpyn,et al.  Pore-Scale Lattice Boltzmann Modeling and 4D X-ray Computed Microtomography Imaging of Fracture-Matrix Fluid Transfer , 2013, Transport in Porous Media.

[342]  Ali Q. Raeini,et al.  Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces , 2014 .

[343]  M. Blunt,et al.  Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. , 2012, Journal of colloid and interface science.

[344]  Morteza Esmaeili,et al.  Ptychographic X-ray Tomography of Silk Fiber Hydration , 2013 .

[345]  Martin J. Blunt,et al.  The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions , 2015, Transport in Porous Media.

[346]  Veerle Cnudde,et al.  Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone. , 2015, Micron.

[347]  Roland Zengerle,et al.  Three-Dimensional Reconstruction of a LiCoO2 Li-Ion Battery Cathode , 2012 .

[348]  Li Chen,et al.  Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[349]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[350]  Lucia Mancini,et al.  Gas-driven filter pressing in magmas: Insights into in-situ melt segregation from crystal mushes , 2015 .

[351]  P. Botha,et al.  Research in quantitative mineralogy: Examples from diverse applications , 2009 .

[352]  Joann E. Welton,et al.  SEM Petrology Atlas , 1984 .

[353]  D. Sutherland Estimation of mineral grain size using automated mineralogy , 2007 .

[354]  Stig Bakke,et al.  Extending Predictive Capabilities to Network Models , 1998 .

[355]  Peter Austin,et al.  Quantitative evaluation of mineral grains using automated SEM–EDS analysis and its application potential in optically stimulated luminescence dating , 2013 .

[356]  Veerle Cnudde,et al.  Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks , 2015 .

[357]  J. Thijssen,et al.  Computational Physics , 1999 .

[358]  Carmen Soriano,et al.  Phase-contrast synchrotron microtomography reveals the morphology of a partially visible new Pseudogarypus in Baltic amber (Pseudoscorpiones: Pseudogarypidae) , 2012 .

[359]  G. Andriani,et al.  Physical properties and textural parameters of calcarenitic rocks: qualitative and quantitative evaluations , 2002 .

[360]  A. A. Mohamad,et al.  Multirange multi-relaxation time Shan-Chen model with extended equilibrium , 2010, Comput. Math. Appl..

[361]  J. Nellesen,et al.  Non-invasive 3D analysis of local soil deformation under mechanical and hydraulic stresses by μCT and digital image correlation , 2010 .

[362]  Jalel Ochi,et al.  A Two-Dimensional Network Model to Simulate Permeability Decrease Under Hydrodynamic Effect of Particle Release and Capture , 1999 .

[363]  Veerle Cnudde,et al.  Prediction and Evaluation of Time-Dependent Effective Self-diffusivity of Water and Other Effective Transport Properties Associated with Reconstructed Porous Solids , 2015, Transport in Porous Media.

[364]  R. Ketcham,et al.  Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences , 2001 .

[365]  Matthew R. Hanlon,et al.  Digital Rocks Portal , 2015 .

[366]  Rocío Ortiz,et al.  Digital image analysis and EDX SEM as combined techniques to evaluate salt damp on walls , 2013 .

[367]  Björn Schouenborg,et al.  Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation , 2006 .

[368]  Veerle Cnudde,et al.  High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications , 2013 .

[369]  Daniel Phifer,et al.  Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. , 2007, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[370]  Jan Prins,et al.  A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems , 2014, Comput. Phys. Commun..

[371]  Juan Vicente Giráldez,et al.  Simulation of Tracer Dispersion in Porous Media Using Lattice Boltzmann and Random Walk Models , 2005 .

[372]  Oleg Yurievich Dinariev,et al.  Direct Hydrodynamic Simulation of Multiphase Flow in Porous Rock , 2014 .

[373]  Thompson,et al.  Fractal sandstone pores: Automated measurements using scanning-electron-microscope images. , 1986, Physical review. B, Condensed matter.

[374]  W. D. Keller Kaolinization of feldspar as displayed in scanning electron micrographs , 1978 .

[375]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[376]  Adrian Sheppard,et al.  Imaged-based multiscale network modelling of microporosity in carbonates , 2014 .

[377]  Frieder Enzmann,et al.  Real-time 3D imaging of Haines jumps in porous media flow , 2013, Proceedings of the National Academy of Sciences.

[378]  Robert Hull,et al.  Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy , 1999 .

[379]  Ali Q. Raeini Modelling multiphase flow through micro-CT images of the pore space , 2013 .

[380]  Emanuele Catalano,et al.  Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings , 2012, Transport in Porous Media.

[381]  G. R. Jerauld,et al.  The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling , 1990 .

[382]  G H van Lenthe,et al.  Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. , 2009, Bone.

[383]  Michael C. Sukop,et al.  Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers , 2005 .

[384]  Stéphane Zaleski,et al.  Developments on Relative Permeability Computation in 3D Rock Images , 2014 .

[385]  Guan Qin,et al.  Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs , 2009 .

[386]  W. E. Soll,et al.  Wettability and rate effects on immiscible displacement: Lattice Boltzmann simulation in microtomographic images of reservoir rocks , 1998 .

[387]  Kenneth Stuart Sorbie,et al.  Can Network Modeling Predict Two-Phase Flow Functions? , 2012 .

[388]  János Urai,et al.  BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany , 2012 .

[389]  M. L. Porter,et al.  Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media , 2009 .

[390]  I. Bondino,et al.  Relative Permeabilities From Simulation in 3D Rock Models and Equivalent Pore Networks: Critical Review and Way Forward1 , 2013 .

[391]  Faisal Khan,et al.  3D simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and LBE solver , 2011, Journal of Soils and Sediments.

[392]  M. A. Williamson,et al.  Effects of diagenesis on shale nano-pore structure and implications for sealing capacity , 1994 .

[393]  Olga Vizika,et al.  SCA2003-12: A DUAL NETWORK MODEL FOR RELATIVE PERMEABILITY OF BIMODAL ROCKS: APPLICATION IN A VUGGY CARBONATE , 2003 .

[394]  Oleg Yurievich Dinariev,et al.  Density functional modelling in multiphase compositional hydrodynamics , 2011 .

[395]  Richard C. Martineau,et al.  Particle-Based Direct Numerical Simulation of Contaminant Transport and Deposition in Porous Flow , 2004 .

[396]  Martin J. Blunt,et al.  Predictive pore‐scale modeling of two‐phase flow in mixed wet media , 2004 .

[397]  Patrick Barthelemy,et al.  MICRON TO MILLIMETER UPSCALING OF SHALE ROCK PROPERTIES BASED ON 3D IMAGING AND MODELING , 2012 .