Preparation of CaCO3 coated corundum aggregates by dip-coating and heat treatment and its effects on the properties and microstructures of Al2O3–MgO castables

[1]  Guoqing Xiao,et al.  Enhanced thermal shock resistance of hydratable magnesium carboxylate bonded castables via in-situ formation of micro-sized spinel , 2021 .

[2]  Chao Yu,et al.  In-situ formation of plate-like Al4O4C and MWCNTs in Al2O3–C refractories with Al4SiC4 additives , 2021 .

[3]  L. Skibsted,et al.  Hydrates of calcium citrate and their interconversion in relation to calcium bioaccessibility. , 2020, Food research international.

[4]  Guoqing Xiao,et al.  Thermal shock resistance properties of refractory castables bonded with a CaO-free binder , 2020 .

[5]  J. Kaduk Crystal structure of aqua(citric acid)(hydrogen citrato)calcium monohydrate, [Ca(HC6H5O7)(H3C6H5O7)(H2O)]·H2O, from synchrotron X-ray powder data, and DFT-optimized crystal structure of existing calcium hydrogen citrate trihydrate, [Ca(HC6H5O7)(H2O)3] , 2020, Acta crystallographica. Section E, Crystallographic communications.

[6]  Qiang Wang,et al.  A novel approach to lightweight alumina‐carbon refractories for flow control of molten steel , 2020 .

[7]  G. Ye,et al.  Effect of the water-soluble calcium chloride on volumetric stability and thermal shock resistance of alumina-based castables , 2020, Ceramics International.

[8]  Xiaofeng Xu,et al.  Investigation of fracture behavior of cement-bonded corundum castables using wedge splitting test and digital image correlation method , 2020 .

[9]  Xinhong Liu,et al.  A novel method for the fabrication of porous calcium hexaluminate (CA6) ceramics using pre-fired CaO/Al2O3 pellets as calcia source , 2020 .

[10]  Zhu He,et al.  Effects of cement content on the microstructural evolution and mechanical properties of cement-bonded corundum castables , 2020 .

[11]  Guoqing Xiao,et al.  Improved properties of low‐carbon MgO‐C refractories with the addition of multilayer graphene/MgAl 2 O 4 composite powders , 2020, International Journal of Applied Ceramic Technology.

[12]  Q. Jia,et al.  Synthesis of MgO–MgAl2O4 refractory aggregates for application in MgO–C slide plate , 2019 .

[13]  G. Ye,et al.  Trace nanoscale Al2O3 in Al2O3-MgAl2O4 castable for improved thermal shock performance , 2019 .

[14]  A. Luz,et al.  Binding additives with sintering action for high-alumina based castables , 2019, Ceramics International.

[15]  Kun Liu,et al.  Effect of curing temperature on volume stability of CAC-bonded alumina-based castables , 2019, Ceramics International.

[16]  N. Kazemi Reasons for crack propagation and strength loss in refractory castables based on changes in their chemical compositions and micromorphologies with heating: special focus on the large blocks , 2019, Journal of Asian Ceramic Societies.

[17]  Jie Liu,et al.  Improvement in fatigue resistance performance of corundum castables with addition of different size calcium hexaluminate particles , 2019, Ceramics International.

[18]  J. Sakihama,et al.  Characterization of porous calcium hexaluminate ceramics produced from calcined alumina and microspheres of Vaterite (μ-CaCO3) , 2018, Journal of the European Ceramic Society.

[19]  R. Salomão,et al.  Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate , 2018 .

[20]  L. Skibsted,et al.  Codissolution of calcium hydrogenphosphate and sodium hydrogencitrate in water. Spontaneous supersaturation of calcium citrate increasing calcium bioavailability , 2017, Journal of food and drug analysis.

[21]  R. Raghavan,et al.  Overview on micro- and nanomechanical testing: New insights in interface plasticity and fracture at small length scales , 2018 .

[22]  S. Shishkina,et al.  Structure of bis(citrato)germanates with different types of cations: (Hphen)2[Ge(HCit)2·3H2O], [CuCl(phen)2]2[Ge(HCit)2·6H2O], where H4Cit is citric acid, phen IS 1,10-phenanthroline , 2017, Journal of Structural Chemistry.

[23]  L. Skibsted,et al.  Spontaneous supersaturation of calcium citrate from simultaneous isothermal dissolution of sodium citrate and sparingly soluble calcium hydroxycarboxylates in water , 2017 .

[24]  R. Salomão,et al.  Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates , 2016 .

[25]  J. Lis,et al.  Calcium hexaaluminate synthesis and its influence on the properties of CA2–Al2O3-based refractories , 2015 .

[26]  A. Luz,et al.  Al2O3-based binders for corrosion resistance optimization of Al2O3-MgAl2O4 and Al2O3-MgO refractory castables , 2015 .

[27]  G. Ye,et al.  Effect of Micro‐Sized Calcium Carbonate Addition on Volumetric Stability and Strength of Corundum‐Based Castables , 2015 .

[28]  A. Luz,et al.  CA6 impact on the corrosion behavior of cement-bonded spinel-containing refractory castables: An analysis based on thermodynamic simulations , 2015 .

[29]  T. Tonnesen,et al.  Fracture energy and thermal shock damage resistance of refractory castables containing eutectic aggregates , 2014 .

[30]  V. Pandolfelli,et al.  Extension of Hasselman's thermal shock theory for crack/microstructure interactions in refractories , 2012 .

[31]  V. Pandolfelli,et al.  Calcium aluminate cement source evaluation for Al2O3–MgO refractory castables , 2011 .

[32]  J. Rodrigues,et al.  The influence of microstructure on the maximum load and fracture energy of refractory castables , 2010 .

[33]  P. Pena,et al.  Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags , 2009 .

[34]  K. Watari,et al.  Forming and sintering of porous calcium-hexaaluminate ceramics with hydraulic alumina , 2006 .

[35]  H. Wan,et al.  Ammonium barium citrato peroxotitanate(IV) Ba2(NH4)2[Ti4(O2)4(Hcit)2(cit)2] · 10H2O: a molecular precursor of stoichiometric BaTi2O5 , 2004 .

[36]  D. Stoyan,et al.  On a qualitative relationship between degree of inhomogeneity and cold crushing strength of refractory castables , 2003 .

[37]  G. Fantozzi,et al.  Room temperature quasi-brittle behaviour of an aluminous refractory concrete after firing , 2002 .

[38]  Su-Jien Lin,et al.  Thermal characteristics of Al2O3–MgO and Al2O3–spinel castables for steel ladles , 2002 .

[39]  J. Chevalier,et al.  Thermomechanical properties and fracture mechanisms of calcium hexaluminate , 2001 .

[40]  A. Sanchez-Herencia,et al.  Fracture behaviour of alumina–calcium hexaluminate composites obtained by colloidal processing , 2000 .