Systems biology of microbial metabolism.

[1]  Joerg M. Buescher,et al.  Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity , 2010, Molecular systems biology.

[2]  H. Lehrach,et al.  Regulatory crosstalk of the metabolic network. , 2010, Trends in biochemical sciences.

[3]  Judith B. Zaugg,et al.  Bacterial adaptation through distributed sensing of metabolic fluxes , 2010, Molecular systems biology.

[4]  U. Sauer,et al.  Automatic policing of biochemical annotations using genomic correlations , 2009, Nature chemical biology.

[5]  Qing‐Yu He,et al.  Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. , 2010, Journal of proteome research.

[6]  Jörg Stelling,et al.  Systems analysis of cellular networks under uncertainty , 2009, FEBS letters.

[7]  Vassily Hatzimanikatis,et al.  Computational framework for predictive biodegradation , 2009, Biotechnology and bioengineering.

[8]  Joaquín Ariño,et al.  Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. , 2009, Nature chemical biology.

[9]  M. Suyama,et al.  Transcriptome Complexity in a Genome-Reduced Bacterium , 2009, Science.

[10]  P. Bork,et al.  Impact of Genome Reduction on Bacterial Metabolism and Its Regulation , 2009, Science.

[11]  Joerg M. Buescher,et al.  Metabolic Fluxes during Strong Carbon Catabolite Repression by Malate in Bacillus subtilis* , 2009, The Journal of Biological Chemistry.

[12]  B. Teusink,et al.  Shifts in growth strategies reflect tradeoffs in cellular economics , 2009, Molecular systems biology.

[13]  Jason A. Papin,et al.  Applications of genome-scale metabolic reconstructions , 2009, Molecular systems biology.

[14]  John R Yates,et al.  Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator , 2009, Molecular systems biology.

[15]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[16]  Nicola Zamboni,et al.  Novel biological insights through metabolomics and 13C-flux analysis. , 2009, Current opinion in microbiology.

[17]  Barbara M. Bakker,et al.  Time‐dependent regulation analysis dissects shifts between metabolic and gene‐expression regulation during nitrogen starvation in baker’s yeast , 2009, The FEBS journal.

[18]  Ines Thiele,et al.  Three-Dimensional Structural View of the Central Metabolic Network of Thermotoga maritima , 2009, Science.

[19]  H. Mori,et al.  Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism , 2009, Molecular systems biology.

[20]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[21]  Marcel J. T. Reinders,et al.  Metabolite and reaction inference based on enzyme specificities , 2009, Bioinform..

[22]  Xiao-Jiang Feng,et al.  Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli , 2009, Molecular systems biology.

[23]  Jason A. Papin,et al.  Metabolic network analysis integrated with transcript verification for sequenced genomes , 2009, Nature Methods.

[24]  James C Liao,et al.  Ensemble modeling for strain development of L-lysine-producing Escherichia coli. , 2009, Metabolic engineering.

[25]  Hans Lehrach,et al.  Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response , 2009, Nature Biotechnology.

[26]  R. Sharan,et al.  Metabolic-network-driven analysis of bacterial ecological strategies , 2009, Genome Biology.

[27]  L. Wackett Questioning our perceptions about evolution of biodegradative enzymes. , 2009, Current opinion in microbiology.

[28]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[29]  Michael C. Jewett,et al.  Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p , 2009, Proceedings of the National Academy of Sciences.

[30]  Ralf Zimmer,et al.  Systems Analysis of Bioenergetics and Growth of the Extreme Halophile Halobacterium salinarum , 2009, PLoS Comput. Biol..

[31]  Constance J Jeffery,et al.  Moonlighting proteins--an update. , 2009, Molecular bioSystems.

[32]  Yinjie J. Tang,et al.  Advances in analysis of microbial metabolic fluxes via (13)C isotopic labeling. , 2009, Mass spectrometry reviews.

[33]  U. Völker,et al.  Novel Activities of Glycolytic Enzymes in Bacillus subtilis , 2009, Molecular & Cellular Proteomics.

[34]  Oliver Kotte,et al.  A divide-and-conquer approach to analyze underdetermined biochemical models , 2009, Bioinform..

[35]  Uwe Sauer,et al.  Different Biochemical Mechanisms Ensure Network-Wide Balancing of Reducing Equivalents in Microbial Metabolism , 2009, Journal of bacteriology.

[36]  Olga G. Troyanskaya,et al.  Coordinated Concentration Changes of Transcripts and Metabolites in Saccharomyces cerevisiae , 2009, PLoS Comput. Biol..

[37]  N. Luscombe,et al.  Principles of transcriptional regulation and evolution of the metabolic system in E. coli. , 2009, Genome research.

[38]  Johann Gasteiger,et al.  Uncovering metabolic pathways relevant to phenotypic traits of microbial genomes , 2009, Genome Biology.

[39]  Jens Nielsen,et al.  Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3 , 2009, BMC Systems Biology.

[40]  J. Liao,et al.  Ensemble modeling of metabolic networks. , 2008, Biophysical journal.

[41]  Christian L. Barrett,et al.  Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[42]  J. Bao,et al.  Substrate promiscuity of pyruvate kinase on various deoxynucleoside diphosphates for synthesis of deoxynucleoside triphosphates , 2008 .

[43]  D. Koller,et al.  Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network , 2008, Nature Biotechnology.

[44]  M. Mann,et al.  The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins , 2008, Proteomics.

[45]  M. Bennett,et al.  Metabolic gene regulation in a dynamically changing environment , 2008, Nature.

[46]  U. Sauer,et al.  CcpN Controls Central Carbon Fluxes in Bacillus subtilis , 2008, Journal of bacteriology.

[47]  Victor Chubukov,et al.  Dynamics and Design Principles of a Basic Regulatory Architecture Controlling Metabolic Pathways , 2008, PLoS Biology.

[48]  Eberhard O Voit,et al.  Mathematical modeling of pathogenicity of Cryptococcus neoformans , 2008, Molecular systems biology.

[49]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[50]  Carlos Gancedo,et al.  Moonlighting Proteins in Yeasts , 2008, Microbiology and Molecular Biology Reviews.

[51]  Andreas Kremling,et al.  A feed-forward loop guarantees robust behavior in Escherichia coli carbohydrate uptake , 2008, Bioinform..

[52]  U. Sauer,et al.  Cyclic AMP-Dependent Catabolite Repression Is the Dominant Control Mechanism of Metabolic Fluxes under Glucose Limitation in Escherichia coli , 2008, Journal of bacteriology.

[53]  E. Gilles,et al.  Modeling the electron transport chain of purple non-sulfur bacteria , 2008, Molecular systems biology.

[54]  Radhakrishnan Mahadevan,et al.  Computational and Experimental Analysis of Redundancy in the Central Metabolism of Geobacter sulfurreducens , 2008, PLoS Comput. Biol..

[55]  J. Stülke,et al.  Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression , 2007, Molecular microbiology.

[56]  Vincent Fromion,et al.  Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis , 2008, BMC Systems Biology.

[57]  Barbara M. Bakker,et al.  The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels , 2007, Proceedings of the National Academy of Sciences.

[58]  Andreas Kremling,et al.  Analysis of global control of Escherichia coli carbohydrate uptake , 2007, BMC Systems Biology.

[59]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[60]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.