Gröbner bases for lattices and an algebraic decoding algorithm
暂无分享,去创建一个
[1] Monomial IdealsSerkan Ho. Monomial Ideals , 2001 .
[2] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[3] François Sigrist. Sphere packing , 1983 .
[4] Jr. G. Forney,et al. Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .
[5] Mitchell D. Trott,et al. The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.
[6] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[7] Amir H. Banihashemi,et al. Low-Density Parity-Check Lattices: Construction and Decoding Analysis , 2006, IEEE Transactions on Information Theory.
[8] G. David Forney,et al. Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.
[9] G. David Forney,et al. Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.
[10] Edgar Martínez-Moro,et al. Gröbner bases and combinatorics for binary codes , 2008, Applicable Algebra in Engineering, Communication and Computing.
[11] Frank R. Kschischang,et al. Tanner graphs for group block codes and lattices: Construction and complexity , 2001, IEEE Trans. Inf. Theory.
[12] W. W. Adams,et al. An Introduction to Gröbner Bases , 2012 .
[13] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .