Gröbner bases for lattices and an algebraic decoding algorithm

In this paper we present Gröbner bases for lattices. Gröbner bases for binary linear codes were introduced by Borges et al. [3]. We extend their work to non-binary group block codes. Given a lattice Λ and its associated label code L, which is a group code, we define an ideal for L. A Gröbner basis is assigned to Λ as the Gröbner basis of its label code L. Using this Gröbner basis an algebraic decoding algorithm is introduced.

[1]  Monomial IdealsSerkan Ho Monomial Ideals , 2001 .

[2]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[3]  François Sigrist Sphere packing , 1983 .

[4]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[5]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Amir H. Banihashemi,et al.  Low-Density Parity-Check Lattices: Construction and Decoding Analysis , 2006, IEEE Transactions on Information Theory.

[8]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[9]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[10]  Edgar Martínez-Moro,et al.  Gröbner bases and combinatorics for binary codes , 2008, Applicable Algebra in Engineering, Communication and Computing.

[11]  Frank R. Kschischang,et al.  Tanner graphs for group block codes and lattices: Construction and complexity , 2001, IEEE Trans. Inf. Theory.

[12]  W. W. Adams,et al.  An Introduction to Gröbner Bases , 2012 .

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .