Glutamate Receptor Subtypes Mediating Synaptic Activation of Prefrontal Cortex Neurons: Relevance for Schizophrenia

Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribution, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP–spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP–spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition. To test this possibility, we used simulations in a computational network of reciprocally connected FS neurons and pyramidal cells and found that brief AMPAR-mediated FS neuron activation is crucial to synchronize, via feedback inhibition, pyramidal cells in the gamma frequency band. Our results raise interesting questions about the mechanisms that might link NMDAR hypofunction to alterations of FS neurons in schizophrenia.

[1]  Andrea Hasenstaub,et al.  Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. , 2003, Cerebral cortex.

[2]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .

[3]  M. Huntsman,et al.  Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. , 1994, Cerebral cortex.

[4]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[5]  Wenjun Gao,et al.  Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex , 2009, Neuropsychopharmacology.

[6]  C. Houser,et al.  Up‐regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[7]  R. Palmiter,et al.  Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior , 2009, Proceedings of the National Academy of Sciences.

[8]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[9]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[10]  J. Seamans,et al.  Synaptic basis of persistent activity in prefrontal cortex in vivo and in organotypic cultures. , 2003, Cerebral cortex.

[11]  Karrie R. Jones,et al.  NMDA- and non-NMDA-receptor components of excitatory synaptic potentials recorded from cells in layer V of rat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Kuei Yuan Tseng,et al.  Excitatory response of prefrontal cortical fast‐spiking interneurons to ventral tegmental area stimulation in vivo , 2006, Synapse.

[13]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[14]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[15]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[16]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[17]  R. Godbout,et al.  Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: Evidence for the involvement of both dopaminergic and GABAergic components , 1992, Neuroscience.

[18]  Norbert Hájos,et al.  Network mechanisms of gamma oscillations in the CA3 region of the hippocampus , 2009, Neural Networks.

[19]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[20]  D. Javitt,et al.  Recent advances in the phencyclidine model of schizophrenia. , 1991, The American journal of psychiatry.

[21]  Peter Jonas,et al.  Hyperpolarization‐activated cation channels in fast‐spiking interneurons of rat hippocampus , 2006, The Journal of physiology.

[22]  C. Carter,et al.  Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia , 2006, Proceedings of the National Academy of Sciences.

[23]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[24]  M. Bartos,et al.  Associative Plasticity at Excitatory Synapses Facilitates Recruitment of Fast-Spiking Interneurons in the Dentate Gyrus , 2010, The Journal of Neuroscience.

[25]  Court Hull,et al.  Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs , 2009, The Journal of Neuroscience.

[26]  Matthew E Larkum,et al.  Effect of common anesthetics on dendritic properties in layer 5 neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[27]  M. Hasselmo,et al.  NMDA-dependent modulation of CA1 local circuit inhibition , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[29]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[30]  D. Javitt When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. , 2009, Annual review of clinical psychology.

[31]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[32]  G. Barrionuevo,et al.  Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. , 2001, Journal of neurophysiology.

[33]  Y. Kawaguchi,et al.  Two distinct activity patterns of fast-spiking interneurons during neocortical UP states , 2008, Proceedings of the National Academy of Sciences.

[34]  C. Carter,et al.  Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[36]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[37]  B. Moghaddam,et al.  NMDA Receptor Hypofunction Produces Opposite Effects on Prefrontal Cortex Interneurons and Pyramidal Neurons , 2007, The Journal of Neuroscience.

[38]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[39]  A. Thomson,et al.  N-methylaspartate receptors mediate epileptiform activity evoked in some, but not all, conditions in rat neocortical slices , 1986, Neuroscience.

[40]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[41]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[42]  R. Nicoll,et al.  Analysis of excitatory synaptic action in pyramidal cells using whole‐cell recording from rat hippocampal slices. , 1990, The Journal of physiology.

[43]  L. Benardo,et al.  Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. , 1995, Journal of neurophysiology.

[44]  R. Traub,et al.  Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. , 2008, Schizophrenia bulletin.

[45]  P. Somogyi,et al.  Large variability in synaptic n-methyl-d-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus , 2003, Neuroscience.

[46]  M. Vreugdenhil,et al.  Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. , 2003, Journal of neurophysiology.

[47]  C. Garner,et al.  Mechanisms of vertebrate synaptogenesis. , 2005, Annual review of neuroscience.

[48]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[49]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[50]  E. Jodo,et al.  Acute administration of phencyclidine induces tonic activation of medial prefrontal cortex neurons in freely moving rats , 2002, Neuroscience.

[51]  E. Jones,et al.  The role of afferent activity in the maintenance of primate neocorticalfunction. , 1990, The Journal of experimental biology.

[52]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[53]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[54]  Huaixing Wang,et al.  A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[55]  P. O’Donnell,et al.  Gamma and Delta Neural Oscillations and Association with Clinical Symptoms under Subanesthetic Ketamine , 2010, Neuropsychopharmacology.

[56]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[57]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[58]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[59]  M. Poo,et al.  Spike-Timing-Dependent Plasticity of Neocortical Excitatory Synapses on Inhibitory Interneurons Depends on Target Cell Type , 2007, The Journal of Neuroscience.

[60]  P. Jonas,et al.  Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices , 2008, The Journal of Neuroscience.

[61]  Z. Nusser,et al.  Synapse independence breaks down during highly synchronous network activity in the rat hippocampus , 2005, The European journal of neuroscience.

[62]  Norbert Hájos,et al.  Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro , 2006, The Journal of Neuroscience.

[63]  Kevin L Quick,et al.  Ketamine-Induced Loss of Phenotype of Fast-Spiking Interneurons Is Mediated by NADPH-Oxidase , 2007, Science.

[64]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[65]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[66]  J. Fellous,et al.  A role for NMDA-receptor channels in working memory , 1998, Nature Neuroscience.

[67]  David A Lewis,et al.  Dopamine D1 receptor activation regulates sodium channel‐dependent EPSP amplification in rat prefrontal cortex pyramidal neurons , 2007, The Journal of physiology.

[68]  D. Pinault,et al.  N-Methyl d-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant γ Oscillations in the Rat Neocortex , 2008, Biological Psychiatry.

[69]  S. Akbarian,et al.  Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders , 2006, Brain Research Reviews.

[70]  D. Lewis,et al.  Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. , 2008, Journal of neurophysiology.

[71]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[72]  J. Meador-Woodruff,et al.  NMDA receptors and schizophrenia. , 2007, Current opinion in pharmacology.

[73]  D. Lewis,et al.  GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. , 2008, Schizophrenia bulletin.

[74]  R. Dingledine,et al.  The glutamate receptor ion channels. , 1999, Pharmacological reviews.

[75]  Marco Capogna,et al.  GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input. , 2007, Cerebral cortex.

[76]  A. Zaitsev,et al.  Interneuron diversity in layers 2-3 of monkey prefrontal cortex. , 2009, Cerebral cortex.

[77]  T. Bártfai,et al.  A Specific Role for NR2A-Containing NMDA Receptors in the Maintenance of Parvalbumin and GAD67 Immunoreactivity in Cultured Interneurons , 2006, The Journal of Neuroscience.

[78]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[80]  A. Thomson,et al.  Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. , 1988, Journal of neurophysiology.

[81]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[82]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[83]  David A Lewis,et al.  Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. , 2006, Archives of neurology.

[84]  Peter Somogyi,et al.  Cell Type-Specific Long-Term Plasticity at Glutamatergic Synapses onto Hippocampal Interneurons Expressing either Parvalbumin or CB1 Cannabinoid Receptor , 2010, The Journal of Neuroscience.

[85]  T. Kaneko,et al.  Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia , 2009, BMC psychiatry.

[86]  P. Celada,et al.  Antipsychotic drugs reverse the disruption in prefrontal cortex function produced by NMDA receptor blockade with phencyclidine , 2007, Proceedings of the National Academy of Sciences.

[87]  B. Morris,et al.  Induction of Metabolic Hypofunction and Neurochemical Deficits after Chronic Intermittent Exposure to Phencyclidine: Differential Modulation by Antipsychotic Drugs , 2003, Neuropsychopharmacology.

[88]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[89]  Peter Somogyi,et al.  Anti-Hebbian Long-Term Potentiation in the Hippocampal Feedback Inhibitory Circuit , 2007, Science.

[90]  B. Bean,et al.  Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Y. Yanagawa,et al.  Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits , 2006, The Journal of Neuroscience.

[92]  D. Bayliss,et al.  HCN1 Channel Subunits Are a Molecular Substrate for Hypnotic Actions of Ketamine , 2009, The Journal of Neuroscience.

[93]  N. Seidah,et al.  Regulation by gastric acid of the processing of progastrin‐derived peptides in rat antral mucosa , 1997, The Journal of physiology.

[94]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[95]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[96]  Miles A Whittington,et al.  Fast network oscillations induced by potassium transients in the rat hippocampus in vitro , 2002, The Journal of physiology.

[97]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[98]  Andrea Hasenstaub,et al.  Cell Type-Specific Control of Neuronal Responsiveness by Gamma-Band Oscillatory Inhibition , 2010, The Journal of Neuroscience.

[99]  D. Javitt,et al.  Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia , 2008, Trends in Neurosciences.

[100]  Raymond Dingledine,et al.  Control of Feedforward Dendritic Inhibition by NMDA Receptor-Dependent Spike Timing in Hippocampal Interneurons , 2002, The Journal of Neuroscience.

[101]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[102]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[103]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[104]  S. Cull-Candy,et al.  Role of Distinct NMDA Receptor Subtypes at Central Synapses , 2004, Science's STKE.

[105]  J. Seamans,et al.  Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex , 2009, PloS one.

[106]  Wenjun Gao,et al.  Development of calcium‐permeable AMPA receptors and their correlation with NMDA receptors in fast‐spiking interneurons of rat prefrontal cortex , 2010, The Journal of physiology.

[107]  John G R Jefferys,et al.  Comparison between spontaneous and kainate‐induced gamma oscillations in the mouse hippocampus in vitro , 2009, The European journal of neuroscience.

[108]  D. Pinault,et al.  NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant γ Oscillations Independent of Hyperlocomotion and the State of Consciousness , 2009, PloS one.

[109]  G. Westbrook,et al.  Modulation of excitatory synaptic transmission by glycine and zinc in cultures of mouse hippocampal neurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  J. Coyle The GABA-glutamate connection in schizophrenia: which is the proximate cause? , 2004, Biochemical pharmacology.

[111]  E. Jones,et al.  Differential and Time-Dependent Changes in Gene Expression for Type II Calcium/Calmodulin-Dependent Protein Kinase, 67 kDa Glutamic Acid Decarboxylase, and Glutamate Receptor Subunits in Tetanus Toxin-Induced Focal Epilepsy , 1997, The Journal of Neuroscience.

[112]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[113]  Fiona E. N. LeBeau,et al.  Region-Specific Reduction in Entorhinal Gamma Oscillations and Parvalbumin-Immunoreactive Neurons in Animal Models of Psychiatric Illness , 2006, The Journal of Neuroscience.

[114]  Richard Miles,et al.  Interneuron Diversity series: Fast in, fast out – temporal and spatial signal processing in hippocampal interneurons , 2004, Trends in Neurosciences.

[115]  E. Jodo,et al.  Activation of medial prefrontal cortex by phencyclidine is mediated via a hippocampo-prefrontal pathway. , 2005, Cerebral cortex.

[116]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[117]  Ole Paulsen,et al.  Hippocampal gamma‐frequency oscillations: from interneurones to pyramidal cells, and back , 2005, The Journal of physiology.

[118]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[119]  E. Quinlan,et al.  Visual Deprivation Reactivates Rapid Ocular Dominance Plasticity in Adult Visual Cortex , 2006, The Journal of Neuroscience.

[120]  A. Thomson A magnesium‐sensitive post‐synaptic potential in rat cerebral cortex resembles neuronal responses to N‐methylaspartate. , 1986, The Journal of physiology.

[121]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[122]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[123]  Jean-Marc Fellous,et al.  Regulation of persistent activity by background inhibition in an in vitro model of a cortical microcircuit. , 2003, Cerebral cortex.

[124]  J. Seamans,et al.  Ethanol Inhibits Persistent Activity in Prefrontal Cortical Neurons , 2007, The Journal of Neuroscience.

[125]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[126]  A. Rozov,et al.  Target-Specific Regulation of Synaptic Amplitudes in the Neocortex , 2005, The Journal of Neuroscience.

[127]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.