Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning

In this study, we use the spectral collocation method with preconditioning to solve various nonlinear Schrodinger equations. To reduce round-off error in spectral collocation method we use preconditioning. We study the numerical accuracy of the method. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  Graeme Fairweather,et al.  Numerical Methods for Schrödinger-Type Problems , 2002 .

[3]  Thiab R. Taha,et al.  A numerical scheme for the nonlinear Schrödinger equation , 1991 .

[4]  Succi,et al.  Numerical solution of the gross-pitaevskii equation using an explicit finite-difference scheme: An application to trapped bose-einstein condensates , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Mohammad Taghi Darvishi,et al.  PRECONDITIONING AND DOMAIN DECOMPOSITION SCHEMES TO SOLVE PDES , 2004 .

[6]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[7]  Weizhu Bao,et al.  Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .

[8]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[9]  Hanquan Wang,et al.  Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations , 2005, Appl. Math. Comput..

[10]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[11]  G. Karami Lecture Notes in Engineering , 1989 .

[12]  Paulsamy Muruganandam,et al.  Bose-Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods , 2002, cond-mat/0210177.

[13]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[14]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[15]  Catherine Sulem,et al.  Numerical simulation of singular solutions to the two‐dimensional cubic schrödinger equation , 1984 .

[16]  L. Gardner,et al.  B-spline finite element studies of the non-linear Schrödinger equation , 1993 .

[17]  Eric Cancès,et al.  Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Ming-Chih Lai,et al.  A simple compact fourth-order Poisson solver on polar geometry , 2002 .

[19]  Jean-Paul Berrut,et al.  The errors in calculating the pseudospectral differentiation matrices for C̆ebys̆ev-Gauss-Lobatto points , 1999 .

[20]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .