Identifying the Most Interactive Object in Spatial Databases

This paper investigates a new query, called an MIO query, that retrieves the Most Interactive Object in a given spatial dataset. Consider that an object consists of many spatial points. Given a distance threshold, we say that two objects interact with each other if they have a pair of points whose distance is within the threshold. An MIO query outputs the object that interacts with other objects the most, and it is useful for analytical applications e.g., neuroscience and trajectory databases. The MIO query processing problem is challenging: a nested loop algorithm is computationally inefficient and a theoretical algorithm is computationally efficient but incurs a quadratic space cost. Our solution efficiently processes MIO queries with a novel index, BIGrid (a hybrid index of compressed Bitset, Inverted list, and spatial Grid structures), with a practical memory cost. Furthermore, our solution is designed so that previous query results and multi-core environments can be exploited to accelerate query processing efficiency. Our experiments on synthetic and real datasets demonstrate the efficiency of our solution.

[1]  Alekh Jindal,et al.  An experimental evaluation and analysis of database cracking , 2015, The VLDB Journal.

[2]  Dong-Wan Choi,et al.  Nearest neighborhood search in spatial databases , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[3]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[4]  Huayu Wu,et al.  A General and Parallel Platform for Mining Co-Movement Patterns over Large-scale Trajectories , 2016, Proc. VLDB Endow..

[5]  Arjen van Ooyen,et al.  Estimating neuronal connectivity from axonal and dendritic density fields , 2013, Front. Comput. Neurosci..

[6]  Tang Yu,et al.  Joint search by social and spatial proximity , 2016 .

[7]  Richard E. Korf,et al.  Multi-Way Number Partitioning , 2009, IJCAI.

[8]  Takahiro Hara,et al.  Monitoring MaxRS in Spatial Data Streams , 2016, EDBT.

[9]  A. van Ooyen,et al.  Independently Outgrowing Neurons and Geometry-Based Synapse Formation Produce Networks with Realistic Synaptic Connectivity , 2014, PloS one.

[10]  Christian S. Jensen,et al.  In-Memory Spatial Join: The Data Matters! , 2017, EDBT.

[11]  Johannes Gehrke,et al.  An Experimental Analysis of Iterated Spatial Joins in Main Memory , 2013, Proc. VLDB Endow..

[12]  Jae-Gil Lee,et al.  MoveMine: Mining moving object data for discovery of animal movement patterns , 2011, TIST.

[13]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[14]  James G. King,et al.  An algorithm to predict the connectome of neural microcircuits , 2015, Front. Comput. Neurosci..

[15]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[16]  Joachim Gudmundsson,et al.  Reporting Leaders and Followers among Trajectories of Moving Point Objects , 2008, GeoInformatica.

[17]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.

[18]  Nick Koudas,et al.  Size separation spatial join , 1997, SIGMOD '97.

[19]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Owen Kaser,et al.  Sorting improves word-aligned bitmap indexes , 2010, Data Knowl. Eng..

[21]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[22]  David J. DeWitt,et al.  Partition based spatial-merge join , 1996, SIGMOD '96.

[23]  Yunjun Gao,et al.  UlTraMan: A Unified Platform for Big Trajectory Data Management and Analytics , 2018, Proc. VLDB Endow..

[24]  Zhifeng Bao,et al.  DITA: Distributed In-Memory Trajectory Analytics , 2018, SIGMOD Conference.

[25]  Thomas Heinis,et al.  TOUCH: in-memory spatial join by hierarchical data-oriented partitioning , 2013, SIGMOD '13.

[26]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[27]  Ganesh Bagler,et al.  A distance constrained synaptic plasticity model of C. elegans neuronal network , 2016, 1603.03867.

[28]  Maxym Myroshnychenko,et al.  Rich-Club Organization in Effective Connectivity among Cortical Neurons , 2016, The Journal of Neuroscience.

[29]  Nico Van de Weghe,et al.  QTC3D: Extending the Qualitative Trajectory Calculus to Three Dimensions , 2015, Inf. Sci..

[30]  Thomas Heinis,et al.  THERMAL-JOIN: A Scalable Spatial Join for Dynamic Workloads , 2015, SIGMOD Conference.

[31]  Thomas Heinis,et al.  Space odyssey: efficient exploration of scientific data , 2016, ExploreDB@SIGMOD/PODS.

[32]  Thomas Heinis,et al.  QUASII: QUery-Aware Spatial Incremental Index , 2018, EDBT.

[33]  Owen Kaser,et al.  Compressed bitmap indexes: beyond unions and intersections , 2014, Softw. Pract. Exp..