Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.

Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field. Moreover, particular attention is given to ferrite-based nanoparticles because of their suitability in radio frequency magnetic fields. Also, the key role of Curie temperature in suppressing undesired temperature rise is highlighted.

[1]  M. Edrissi,et al.  Heating ability and biocompatibility study of silica-coated magnetic nanoparticles as heating mediators for magnetic hyperthermia and magnetically triggered drug delivery systems , 2015, Bulletin of Materials Science.

[2]  Dev P. Chakraborty,et al.  Usable Frequencies in Hyperthermia with Thermal Seeds , 1984, IEEE Transactions on Biomedical Engineering.

[3]  Dajie Zhang Magnetic Nanomaterials: Conventional Synthesis and Properties , 2014 .

[4]  Dong Soo Lee,et al.  Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. , 2011, Small.

[5]  P. Mohanan,et al.  Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. , 2013, Carbohydrate polymers.

[6]  P. Pradhan,et al.  Preparation and investigation of potentiality of different soft ferrites for hyperthermia applications , 2005 .

[7]  R. Kodama,et al.  Atomic-scale magnetic modeling of oxide nanoparticles , 1999 .

[8]  M. McHenry,et al.  Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy , 2008 .

[9]  D. Ramimoghadam,et al.  Progress in electrochemical synthesis of magnetic iron oxide nanoparticles , 2014 .

[10]  Alex Goldman,et al.  Modern Ferrite Technology , 1990 .

[11]  Sanjay R. Mishra,et al.  Influence of Al3+ doping on structural and magnetic properties of CoFe2-xAlxO4 Ferrite nanoparticles , 2016 .

[12]  M. Z. Shoushtari,et al.  Effect of bismuth doping on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method , 2016 .

[13]  M. Knobel,et al.  Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. , 2008, Journal of nanoscience and nanotechnology.

[14]  K. Kim Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments , 2016 .

[15]  R. Street,et al.  MAGNETIC PROPERTIES OF ULTRAFINE MNFE2O4 POWDERS PREPARED BY MECHANOCHEMICAL PROCESSING , 2001 .

[16]  C. Rinaldi,et al.  Magnetic fluid hyperthermia: Advances, challenges, and opportunity , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[17]  Jiwon Bang,et al.  Surface engineering of inorganic nanoparticles for imaging and therapy. , 2013, Advanced drug delivery reviews.

[18]  V. Šepelák,et al.  The magnetic and hyperthermia studies of bare and silica-coated La0.75Sr0.25MnO3 nanoparticles , 2011 .

[19]  S. Naseem,et al.  Synthesis of super paramagnetic particles of Mn1−xMgxFe2O4 ferrites for hyperthermia applications , 2014 .

[20]  B. Evans,et al.  Heating efficiency in magnetic nanoparticle hyperthermia , 2014 .

[21]  M. Can,et al.  Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia , 2014, Journal of Nanoparticle Research.

[22]  J. Oleson Hyperthermia by magnetic induction: I. Physical characteristics of the technique. , 1982, International journal of radiation oncology, biology, physics.

[23]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[24]  T. Pellegrino,et al.  From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. , 2010, Pharmacological research.

[25]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.

[26]  R. G. Kulkarni,et al.  Magnetic properties of copper ferrite aluminates , 1996 .

[27]  K. Simeonidis,et al.  Size-Dependent Mechanisms in AC Magnetic Hyperthermia Response of Iron-Oxide Nanoparticles , 2012, IEEE Transactions on Magnetics.

[28]  L. Lartigue,et al.  Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells , 2016 .

[29]  Etienne Duguet,et al.  Towards a versatile platform based on magnetic nanoparticles for in vivo applications , 2006 .

[30]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[31]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[32]  S. Patil,et al.  Substitutional effect of Cr3+ ions on the properties of Mg–Zn ferrite nanoparticles , 2012 .

[33]  María del Puerto Morales,et al.  Static and dynamic magnetic properties of spherical magnetite nanoparticles , 2003 .

[34]  C. Dendrinou-Samara,et al.  A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia. , 2016, Materials science & engineering. C, Materials for biological applications.

[35]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[36]  R. P. Andres,et al.  Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. , 2006, Bioconjugate chemistry.

[37]  P. Levy,et al.  Magnetic dead layer in ferromagnetic manganite nanoparticles , 2009 .

[38]  R. Ivkov,et al.  Physics of heat generation using magnetic nanoparticles for hyperthermia , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[39]  J. Li,et al.  Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression , 2007 .

[40]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[41]  M. Soleymani,et al.  High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. , 2017, Materials science & engineering. C, Materials for biological applications.

[42]  Matthias Zeisberger,et al.  Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia , 2010, Nanotechnology.

[43]  A. Alizadeh,et al.  Thermosensitive polymer-coated La 0.73 Sr 0.27 MnO 3 nanoparticles: potential applications in cancer hyperthermia therapy and magnetically activated drug delivery systems , 2015 .

[44]  Ralph Weissleder,et al.  Nanoparticle imaging of integrins on tumor cells. , 2006, Neoplasia.

[45]  B. Jeyadevan,et al.  Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation , 2005 .

[46]  Chenjie Xu,et al.  New forms of superparamagnetic nanoparticles for biomedical applications. , 2013, Advanced drug delivery reviews.

[47]  K. Rostamizadeh,et al.  The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study , 2015, DARU Journal of Pharmaceutical Sciences.

[48]  H. Mamiya Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia , 2013 .

[49]  Li Bin,et al.  クリノアタカマイトCu2(OH)3ClとテノライトCuOナノ粒子のpH制御選択合成 , 2014 .

[50]  Y. Haik,et al.  Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia , 2015, Nanomaterials.

[51]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[52]  M. Mozaffari,et al.  Positron annihilation and magnetic properties studies of copper substituted nickel ferrite nanoparticles , 2016 .

[53]  H. Shokrollahi,et al.  Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation , 2013 .

[54]  Sébastien Vasseur,et al.  Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues , 2009 .

[55]  Taegyun Kim,et al.  Reduced magnetization in magnetic oxide nanoparticles , 2007 .

[56]  B. Aslibeiki Nanostructural, magnetic and electrical properties of Ag doped Mn-ferrite nanoparticles , 2014 .

[57]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[58]  A. Alizadeh,et al.  Tailoring La1-xSrxMnO3 (0.25 ≤x≤ 0.35) nanoparticles for self-regulating magnetic hyperthermia therapy: an in vivo study. , 2017, Journal of materials chemistry. B.

[59]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[60]  Jian-feng Dong,et al.  Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. , 2011, Oncology reports.

[61]  I. Puri,et al.  Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion , 2011 .

[62]  M. Edrissi,et al.  Synthesis of Bilayer Surfactant-Coated Magnetic Nanoparticles for Application in Magnetic Fluid Hyperthermia , 2016 .

[63]  H. Honda,et al.  Antitumor Immunity Induction by Intracellular Hyperthermia Using Magnetite Cationic Liposomes , 1998, Japanese journal of cancer research : Gann.

[64]  J. Ruso,et al.  Improved magnetic induction heating of nanoferrites for hyperthermia applications: Correlation with colloidal stability and magneto-structural properties , 2015 .

[65]  M. Drofenik,et al.  Synthesis and characterization of Mg1+xFe2−2xTixO4 nanoparticles with an adjustable Curie point , 2014 .

[66]  R. Ningthoujam,et al.  Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. , 2013, Dalton transactions.

[67]  R. Juang,et al.  An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions , 2007 .

[68]  B. Pelaz,et al.  Hyperthermia Using Inorganic Nanoparticles , 2012 .

[69]  G. Salazar-Alvarez,et al.  Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles , 2014, 1406.3966.

[70]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[71]  N. C. Thuan,et al.  Magnetic fluid based on Fe 3 O 4 nanoparticles: Preparation and hyperthermia application , 2009 .

[72]  Paras N Prasad,et al.  Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. , 2005, Journal of the American Chemical Society.

[73]  A. Esmaeili,et al.  Preparation of ZnFe2O4–chitosan-doxorubicin hydrochloride nanoparticles and investigation of their hyperthermic heat-generating characteristics , 2015 .

[74]  R. Perzynski,et al.  Experimental investigation of superspin glass dynamics , 2005 .

[75]  P. Gurman,et al.  In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[76]  Masahiro Hiraoka,et al.  Magnetite nanoparticles with high heating efficiencies for application in the hyperthermia of cancer , 2010 .

[77]  M. Sugimoto The Past, Present, and Future of Ferrites , 1999 .

[78]  Christoph Alexiou,et al.  Targeting cancer cells: magnetic nanoparticles as drug carriers , 2006, European Biophysics Journal.

[79]  J. Ruso,et al.  Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia , 2016 .

[80]  Dipak Maity,et al.  Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. , 2015, International journal of pharmaceutics.

[81]  E. Egito,et al.  Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications , 2014 .

[82]  O. Ciftja Lamellar-like structures in ferrofluids placed in strong magnetic fields , 2009 .

[83]  Lisbeth Illum,et al.  Long circulating microparticulate drug carriers , 1995 .

[84]  Ralph Weissleder,et al.  Colloidal magnetic resonance contrast agents : effect of particle surface on biodistribution , 1993 .

[85]  A. Tomitaka,et al.  Study on increase in temperature of Co–Ti ferrite nanoparticles for magnetic hyperthermia treatment , 2012 .

[86]  A. Maitra,et al.  Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. , 2000, International journal of pharmaceutics.

[87]  M. Mozaffari,et al.  The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles , 2015 .

[88]  Peter Wust,et al.  Magnetic nanoparticle hyperthermia for prostate cancer , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[89]  Abhalaxmi Singh,et al.  Magnetic nanoparticles: a novel platform for cancer theranostics. , 2014, Drug discovery today.

[90]  T. Kline,et al.  Experimental and theoretical investigation of cubic FeCo nanoparticles for magnetic hyperthermia , 2009 .

[91]  Takashi Nakagawa,et al.  Suitability of commercial colloids for magnetic hyperthermia , 2009 .

[92]  M. Mahmoud,et al.  Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method , 2013 .

[93]  M Angelakeris,et al.  Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. , 2017, Biochimica et biophysica acta. General subjects.

[94]  M. Edrissi,et al.  Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications , 2016, Bulletin of Materials Science.

[95]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[96]  Morteza Mahmoudi,et al.  Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. , 2011, Advances in colloid and interface science.

[97]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[98]  N. Thanh,et al.  Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. , 2014, Nanoscale.

[99]  H. Gu,et al.  Magnetite ferrofluid with high specific absorption rate for application in hyperthermia , 2007 .

[100]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[101]  Hisao Suzuki,et al.  Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application , 2015 .

[102]  Hiroyuki Honda,et al.  Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma , 2003, Cancer Immunology, Immunotherapy.

[103]  D. Cortés-Hernández,et al.  Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications , 2017 .

[104]  Takeshi Kobayashi,et al.  Cancer hyperthermia using magnetic nanoparticles , 2011, Biotechnology journal.

[105]  M. Oumezzine,et al.  Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method , 2015 .

[106]  S. Maenosono,et al.  Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia , 2006, IEEE Transactions on Magnetics.

[107]  O. Kuznetsov,et al.  Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature , 2007 .

[108]  Sanjay R. Mishra,et al.  Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2−xAlxO4 nanoferrites , 2015 .

[109]  R. Ningthoujam,et al.  Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments , 2014 .

[110]  R. Kodama,et al.  Surface spin disorder in ferrite nanoparticles (invited) , 1997 .

[111]  M. Guo,et al.  Size and shape effects on Curie temperature of ferromagnetic nanoparticles , 2007 .

[112]  M. Gabal Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white , 2009 .

[113]  Michele K Lima-Tenório,et al.  Magnetic nanoparticles: In vivo cancer diagnosis and therapy. , 2015, International journal of pharmaceutics.

[114]  K. Knížek,et al.  Magnetic heating by silica-coated Co–Zn ferrite particles , 2014 .

[115]  N. Thanh,et al.  Functionalisation of nanoparticles for biomedical applications , 2010 .

[116]  S. Jacobo,et al.  Structural and magnetic influence of yttrium-for-iron substitution in cobalt ferrite , 2017 .

[117]  Nathan Kohler,et al.  Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. , 2002, Biomaterials.

[118]  N. A. Ali,et al.  Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method , 2014 .

[119]  P Wust,et al.  Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. , 1997, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[120]  R. Kodama,et al.  Surface Spin Disorder in Ferrite Nanoparticles , 1996 .

[121]  Mingyuan Gao,et al.  Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications , 2009 .

[122]  R. Ningthoujam,et al.  Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. , 2013, Colloids and surfaces. B, Biointerfaces.

[123]  Pedro Tartaj,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2009 .

[124]  R. Hong,et al.  Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles , 2008 .

[125]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[126]  H. M. Hosseini,et al.  A simple model for the size and shape dependent Curie temperature of freestanding Ni and Fe nanoparticles based on the average coordination number and atomic cohesive energy , 2011 .