Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons

Cellular Ca2+ buffers determine amplitude and diffusional spread of neuronal Ca2+ signals. Fixed Ca2+ buffers tend to retard the signal and to lower the apparent diffusion coefficient (D(app)) of Ca2+, whereas mobile buffers contribute to Ca2+ redistribution. To estimate the impact of the expression of specific Ca2+-binding proteins or the errors in Ca2+ measurement introduced by indicator dyes, the diffusion coefficient De and the Ca2+-binding ratio kappa(e) of endogenous Ca2+ buffers must be known. In this study, we obtain upper bounds to these quantities (De < 16 microm2/s; kappa(e) < 60) for axoplasm of metacerebral cells of Aplysia california. Due to these very low values, even minute concentrations of indicator dyes will interfere with the spatiotemporal pattern of Ca2+ signals and will conceal changes in the expression of specific Ca2+-binding proteins, which in the native neuron are expected to have significant effects on Ca2+ signals.

[1]  J. Falke,et al.  Molecular Tuning of Ion Binding to Calcium Signaling Proteins , 1994, Quarterly Reviews of Biophysics.

[2]  I. Parker,et al.  Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate‐mediated Ca2+ liberation in Xenopus oocytes. , 1994, The Journal of physiology.

[3]  D. Lowenstein,et al.  Up regulation of calbindin-D28K mRNA in the rat hippocampus following focal stimulation of the perforant path , 1991, Neuron.

[4]  E. Friauf,et al.  Distribution of the calcium‐binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats , 1996, The Journal of comparative neurology.

[5]  N. Al-Baldawi,et al.  Calcium diffusion coefficient in Myxicola axoplasm. , 1995, Cell calcium.

[6]  C. Ashley,et al.  Fura‐2 diffusion and its use as an indicator of transient free calcium changes in single striated muscle cells , 1986, FEBS letters.

[7]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[8]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[9]  C. Heizmann,et al.  Calcium Regulation by Calcium-Binding Proteins in Neurodegenerative Disorders , 1995, Neuroscience Intelligence Unit.

[10]  E Neher,et al.  Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. , 1993, The Journal of physiology.

[11]  M. Spira,et al.  Spatiotemporal Distribution of Ca2+ Following Axotomy and Throughout the Recovery Process of Cultured Aplysia Neurons , 1993, The European journal of neuroscience.

[12]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[13]  I. Llano,et al.  High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[14]  J. Connor,et al.  Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. , 1988, Cell calcium.

[15]  Richard J. Miller The control of neuronal Ca2+ homeostasis , 1991, Progress in Neurobiology.

[16]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[17]  S. Konosu,et al.  CARP MYOGENS OF WHITE AND RED MUSCLES. PROPERTIES AND AMINO ACID COMPOSITION OF THE MAIN LOW-MOLECULAR-WEIGHT COMPONENTS OF WHITE MUSCLE. , 1965, The Biochemical journal.

[18]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[19]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[20]  R. Zucker,et al.  Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones , 1980, The Journal of physiology.

[21]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[22]  H. Kasai Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity , 1993, Neuroscience Research.

[23]  A. Hodgkin,et al.  Movements of labelled calcium in squid giant axons , 1957, The Journal of physiology.

[24]  M. Kushmerick,et al.  Ionic Mobility in Muscle Cells , 1969, Science.

[25]  C. Koch,et al.  Linearized models of calcium dynamics: formal equivalence to the cable equation , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  M. Mattson,et al.  Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-1328k in cultured hippocampal neurons , 1991, Neuron.

[27]  D. Tillotson,et al.  The rate of diffusion of Ca2+ and Ba2+ in a nerve cell body. , 1985, Biophysical journal.

[28]  C. Buettger,et al.  The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  William M. Roberts,et al.  Spatial calcium buffering in saccular hair cells , 1993, Nature.

[30]  M. Spira,et al.  Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. , 1993, Journal of neurobiology.

[31]  R. Fields,et al.  Resonant activation of calcium signal transduction in neurons. , 1994, Journal of neurobiology.

[32]  J. Capony,et al.  The binding of calcium to muscular parvalbumins. , 1972, Biochimica et biophysica acta.

[33]  F. Sala,et al.  Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. , 1990, Biophysical journal.

[34]  K. R. Robinson,et al.  The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  N. Al-Baldawi,et al.  Cytoplasmic calcium buffer capacity determined with Nitr-5 and DM-nitrophen. , 1995, Cell calcium.

[36]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[37]  M. Spira,et al.  Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. , 1995, Journal of neurophysiology.

[38]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[39]  J. Keizer,et al.  Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. , 1994, Biophysical journal.