On Doctrines and Cartesian Bicategories
暂无分享,去创建一个
Filippo Bonchi | Alessio Santamaria | Jens Seeber | Pawel Soboci'nski | F. Bonchi | Pawel Soboci'nski | A. Santamaria | Jens Seeber
[1] Filippo Bonchi,et al. Graphical Conjunctive Queries , 2018, CSL.
[2] Fabio Zanasi,et al. A String Diagrammatic Axiomatisation of Finite-State Automata , 2020, FoSSaCS.
[3] F. W. Lawvere,et al. Diagonal arguments and cartesian closed categories , 1969 .
[4] Filippo Bonchi,et al. Deconstructing Lawvere with distributive laws , 2018, J. Log. Algebraic Methods Program..
[5] A. Carboni,et al. Cartesian bicategories I , 1987 .
[6] Paolo Rapisarda,et al. A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[7] Chad Nester,et al. Functorial semantics for partial theories , 2020, Proc. ACM Program. Lang..
[8] G. Rosolini,et al. Triposes, exact completions, and Hilbert's ε-operator , 2017 .
[9] Filippo Bonchi,et al. Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..
[10] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[11] Giuseppe Rosolini,et al. Quotient Completion for the Foundation of Constructive Mathematics , 2012, Logica Universalis.
[12] Brendan Fong,et al. String Diagrams for Regular Logic (Extended Abstract) , 2019, ACT.
[13] G. Brady,et al. A categorical interpretation of C.S. Peirce's propositional logic Alpha , 2000 .
[14] Evan Patterson,et al. Knowledge Representation in Bicategories of Relations , 2017, ArXiv.
[15] Giuseppe Rosolini,et al. Unifying Exact Completions , 2015, Appl. Categorical Struct..
[16] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[17] Filippo Bonchi,et al. Full Abstraction for Signal Flow Graphs , 2015, POPL.
[18] Thomas A. O. Fox. Coalgebras and cartesian categories , 1976 .
[19] Dan R. Ghica,et al. Categorical semantics of digital circuits , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).
[20] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.