On Doctrines and Cartesian Bicategories

Abstract We study the relationship between cartesian bicategories and a specialisation of Lawvere’s hyperdoctrines, namely elementary existential doctrines. Both provide different ways of abstracting the structural properties of logical systems: the former in algebraic terms based on a string diagrammatic calculus, the latter in universal terms using the fundamental notion of adjoint functor. We prove that these two approaches are related by an adjunction, which can be strengthened to an equivalence by imposing further constraints on doctrines.

[1]  Filippo Bonchi,et al.  Graphical Conjunctive Queries , 2018, CSL.

[2]  Fabio Zanasi,et al.  A String Diagrammatic Axiomatisation of Finite-State Automata , 2020, FoSSaCS.

[3]  F. W. Lawvere,et al.  Diagonal arguments and cartesian closed categories , 1969 .

[4]  Filippo Bonchi,et al.  Deconstructing Lawvere with distributive laws , 2018, J. Log. Algebraic Methods Program..

[5]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[6]  Paolo Rapisarda,et al.  A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[7]  Chad Nester,et al.  Functorial semantics for partial theories , 2020, Proc. ACM Program. Lang..

[8]  G. Rosolini,et al.  Triposes, exact completions, and Hilbert's ε-operator , 2017 .

[9]  Filippo Bonchi,et al.  Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..

[10]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Giuseppe Rosolini,et al.  Quotient Completion for the Foundation of Constructive Mathematics , 2012, Logica Universalis.

[12]  Brendan Fong,et al.  String Diagrams for Regular Logic (Extended Abstract) , 2019, ACT.

[13]  G. Brady,et al.  A categorical interpretation of C.S. Peirce's propositional logic Alpha , 2000 .

[14]  Evan Patterson,et al.  Knowledge Representation in Bicategories of Relations , 2017, ArXiv.

[15]  Giuseppe Rosolini,et al.  Unifying Exact Completions , 2015, Appl. Categorical Struct..

[16]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[17]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[18]  Thomas A. O. Fox Coalgebras and cartesian categories , 1976 .

[19]  Dan R. Ghica,et al.  Categorical semantics of digital circuits , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).

[20]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.