Hydrothermal Synthesis of Nanosized LiMnO2 – Li2MnO3 Compounds and Their Electrochemical Performances
暂无分享,去创建一个
Yong Yang | Hongjun Yue | Yong Yang | Xingkang Huang | Qingshun Zhang | Jianlong Gan | Haitao Chang | Hongjun Yue | Xingkang Huang | Qingshun Zhang | Jianlong Gan | Haitao Chang
[1] P. Bruce,et al. The origin of electrochemical activity in Li2MnO3. , 2003, Chemical communications.
[2] Yong Yang,et al. Preparation and Properties of Manganese Oxide/Carbon Composites by Reduction of Potassium Permanganate with Acetylene Black , 2007 .
[3] Yong Yang,et al. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization , 2008, Nanotechnology.
[4] M. Thackeray,et al. An Investigation of Spinel‐Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries , 1994 .
[5] J. Dahn,et al. Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures , 1993 .
[6] She-huang Wu,et al. Preparation and characterization of o-LiMnO2 cathode materials , 2007 .
[7] M. Broussely,et al. Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder , 1996 .
[8] Michael M. Thackeray,et al. Manganese oxides for lithium batteries , 1997 .
[9] John T. Vaughey,et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .
[10] J. Dahn,et al. The effect of ammonia reduction on the spinel electrode materials, LiMn2O4 and Li(Li1/3Mn5/3)O4 , 1994 .
[11] Christopher S. Johnson,et al. Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .
[12] MyungSeung-Taek,et al. Orthorhombic LiMnO2 as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal Route at 170 °C , 2001 .
[13] H. Kanoh,et al. Preparation of a new type of manganese oxide by selective lithium extraction from monoclinic Li2MnO3 for lithium rechargeable batteries , 2000 .
[14] John T. Vaughey,et al. Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .
[15] K. Nahm,et al. Design and analysis of triangle phase diagram for preparation of new lithium manganese oxide solid solutions with stable layered crystal structure , 2005 .
[16] D. Capsoni,et al. Ab initio structure determination of Li2MnO3 from X-ray powder diffraction data , 1997 .
[17] S. Gopukumar,et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode , 1999 .
[18] W. F. Howard,et al. Morphology modification and delithiation mechanisms of LiMn2O4 and Li2MnO3 by acid digestion , 1998 .
[19] P. Bruce,et al. Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .
[20] M. Tabuchi,et al. Heat-Treatment Effect on Phase Stability, Cation Distribution, Chemical Composition, and Electrochemical Behavior for Fe-Substituted Li2MnO3 , 2005 .
[21] M. Shikano,et al. Optimizing Chemical Composition and Preparation Conditions for Fe -Substituted Li2MnO3 Positive Electrode Material , 2007 .
[22] Yong Yang,et al. Hydrothermal Synthesis and Electrochemical Performance of Li 1.59 H 0.41 MnO 3 as a Cathode Material for Lithium-Ion Battery , 2008 .
[23] M. Yoshio,et al. Preparation of Orthorhombic LiMnO2 Material by Quenching , 2001 .
[24] H. Sakaebe,et al. Synthesis, Cation Distribution, and Electrochemical Properties of Fe-Substituted Li2MnO3 as a Novel 4 V Positive Electrode Material , 2002 .
[25] Jingsi Yang,et al. Synthesis, Electrochemistry, and Structural Studies of Lithium Intercalation of a Nanocrystalline Li2MnO3-like Compound , 2005 .
[26] Jung-Min Kim,et al. Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults , 2003 .
[27] Christopher S. Johnson,et al. Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .
[28] P. Bruce,et al. Overcharging manganese oxides: Extracting lithium beyond Mn4+ , 2005 .
[29] Mengqiang Wu,et al. Nanocrystalline orthorhombic LiMnO2 cathode materials synthesized by a two-step liquid-phase thermal process , 2004 .
[30] Zhonghua Lu,et al. Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .
[31] H. Kanoh,et al. Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions , 2000 .
[32] K. Nikolowski,et al. In situ synchrotron diffraction study of high temperature prepared orthorhombic LiMnO2 , 2007 .
[33] H. Sakaebe,et al. The effects of preparation condition and dopant on the electrochemical property for Fe-substituted Li2MnO3 , 2005 .
[34] Y. Chiang,et al. Electrochemical Cycling‐Induced Spinel Formation in High‐Charge‐Capacity Orthorhombic LiMnO2 , 1999 .
[35] Seung‐Taek Myung,et al. Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 , 2002 .
[36] K. Amine,et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤x≤ 0.5) , 2007 .
[37] M. Thackeray,et al. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .
[38] John T. Vaughey,et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .
[39] J. J. Murray,et al. Lithium-ion cell based on orthorhombic LiMnO2 , 1995 .