Hydrothermal Synthesis of Nanosized LiMnO2 – Li2MnO3 Compounds and Their Electrochemical Performances

National Basic Research Program of China [2007CB209702]; National Natural Science Foundation of China [90606015, 20473060, 29925310, 20021002]

[1]  P. Bruce,et al.  The origin of electrochemical activity in Li2MnO3. , 2003, Chemical communications.

[2]  Yong Yang,et al.  Preparation and Properties of Manganese Oxide/Carbon Composites by Reduction of Potassium Permanganate with Acetylene Black , 2007 .

[3]  Yong Yang,et al.  Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization , 2008, Nanotechnology.

[4]  M. Thackeray,et al.  An Investigation of Spinel‐Related and Orthorhombic LiMnO2 Cathodes for Rechargeable Lithium Batteries , 1994 .

[5]  J. Dahn,et al.  Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures , 1993 .

[6]  She-huang Wu,et al.  Preparation and characterization of o-LiMnO2 cathode materials , 2007 .

[7]  M. Broussely,et al.  Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder , 1996 .

[8]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[9]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[10]  J. Dahn,et al.  The effect of ammonia reduction on the spinel electrode materials, LiMn2O4 and Li(Li1/3Mn5/3)O4 , 1994 .

[11]  Christopher S. Johnson,et al.  Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .

[12]  MyungSeung-Taek,et al.  Orthorhombic LiMnO2 as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal Route at 170 °C , 2001 .

[13]  H. Kanoh,et al.  Preparation of a new type of manganese oxide by selective lithium extraction from monoclinic Li2MnO3 for lithium rechargeable batteries , 2000 .

[14]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[15]  K. Nahm,et al.  Design and analysis of triangle phase diagram for preparation of new lithium manganese oxide solid solutions with stable layered crystal structure , 2005 .

[16]  D. Capsoni,et al.  Ab initio structure determination of Li2MnO3 from X-ray powder diffraction data , 1997 .

[17]  S. Gopukumar,et al.  Lithium metal rechargeable cells using Li2MnO3 as the positive electrode , 1999 .

[18]  W. F. Howard,et al.  Morphology modification and delithiation mechanisms of LiMn2O4 and Li2MnO3 by acid digestion , 1998 .

[19]  P. Bruce,et al.  Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .

[20]  M. Tabuchi,et al.  Heat-Treatment Effect on Phase Stability, Cation Distribution, Chemical Composition, and Electrochemical Behavior for Fe-Substituted Li2MnO3 , 2005 .

[21]  M. Shikano,et al.  Optimizing Chemical Composition and Preparation Conditions for Fe -Substituted Li2MnO3 Positive Electrode Material , 2007 .

[22]  Yong Yang,et al.  Hydrothermal Synthesis and Electrochemical Performance of Li 1.59 H 0.41 MnO 3 as a Cathode Material for Lithium-Ion Battery , 2008 .

[23]  M. Yoshio,et al.  Preparation of Orthorhombic LiMnO2 Material by Quenching , 2001 .

[24]  H. Sakaebe,et al.  Synthesis, Cation Distribution, and Electrochemical Properties of Fe-Substituted Li2MnO3 as a Novel 4 V Positive Electrode Material , 2002 .

[25]  Jingsi Yang,et al.  Synthesis, Electrochemistry, and Structural Studies of Lithium Intercalation of a Nanocrystalline Li2MnO3-like Compound , 2005 .

[26]  Jung-Min Kim,et al.  Electrochemical characteristics of orthorhombic LiMnO2 with different degrees of stacking faults , 2003 .

[27]  Christopher S. Johnson,et al.  Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .

[28]  P. Bruce,et al.  Overcharging manganese oxides: Extracting lithium beyond Mn4+ , 2005 .

[29]  Mengqiang Wu,et al.  Nanocrystalline orthorhombic LiMnO2 cathode materials synthesized by a two-step liquid-phase thermal process , 2004 .

[30]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[31]  H. Kanoh,et al.  Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditions , 2000 .

[32]  K. Nikolowski,et al.  In situ synchrotron diffraction study of high temperature prepared orthorhombic LiMnO2 , 2007 .

[33]  H. Sakaebe,et al.  The effects of preparation condition and dopant on the electrochemical property for Fe-substituted Li2MnO3 , 2005 .

[34]  Y. Chiang,et al.  Electrochemical Cycling‐Induced Spinel Formation in High‐Charge‐Capacity Orthorhombic LiMnO2 , 1999 .

[35]  Seung‐Taek Myung,et al.  Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 , 2002 .

[36]  K. Amine,et al.  Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤x≤ 0.5) , 2007 .

[37]  M. Thackeray,et al.  Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications , 1991 .

[38]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[39]  J. J. Murray,et al.  Lithium-ion cell based on orthorhombic LiMnO2 , 1995 .