Geometry of Quantum States from Symmetric Informationally Complete Probabilities

It is usually taken for granted that the natural mathematical framework for quantum mechanics is the theory of Hilbert spaces, where pure states of a quantum system correspond to complex vectors of unit length. These vectors can be combined to create more general states expressed in terms of positive semidefinite matrices of unit trace called density operators. A density operator tells us everything we know about a quantum system. In particular, it specifies a unique probability for any measurement outcome. Thus, to fully appreciate quantum mechanics as a statistical model for physical phenomena, it is necessary to understand the basic properties of its set of states. Studying the convex geometry of quantum states provides important clues as to why the theory is expressed most naturally in terms of complex amplitudes. At the very least, it gives us a new perspective into thinking about structure of quantum mechanics. This thesis is concerned with the structure of quantum state space obtained from the geometry of the convex set of probability distributions for a special class of measurements called symmetric informationally complete (SIC) measurements. In this context, quantum mechanics is seen as a particular restriction of a regular simplex, where the state space is postulated to carry a symmetric set of states called SICs, which are associated with equiangular lines in a complex vector space. The analysis applies specifically to 3-dimensional quantum systems or qutrits, which is the simplest nontrivial case to consider according to Gleason’s theorem. It includes a full characterization of qutrit SICs and includes specific proposals for implementing them using linear optics. The infinitely many qutrit SICs are classified into inequivalent families according to the Clifford group, where equivalence is defined by geometrically invariant numbers called triple products. The multiplication of SIC projectors is also used to define structure coefficients, which are convenient for elucidating some additional structure possessed by SICs, such as the Lie algebra associated with the operator basis defined by SICs, and a linear dependency structure inherited from the Weyl-Heisenberg symmetry. After describing the general one-to-one correspondence between density operators and SIC probabilities, many interesting features of the set of qutrits are described, including an elegant formula for its pure states, which reveals a permutation symmetry related to the structure of a finite affine plane, the exact rotational equivalence of different SIC probability spaces, the shape of qutrit state space defined by the radial distance of the boundary from the maximally mixed state, and a comparison of the 2-dimensional cross-sections of SIC probabilities to known results. Towards the end, the representation of quantum states in terms of SICs is used to develop a method for reconstructing quantum theory from the postulate of maximal consistency, and a procedure for building up qutrit state space from a finite set of points corresponding to a Hesse configuration in Hilbert space is sketched briefly.

[1]  O. Alibart,et al.  A quantum relay chip based on telecommunication integrated optics technology , 2011 .

[2]  Paulo E. M. F. Mendonca,et al.  Alternative fidelity measure between quantum states , 2008, 0806.1150.

[3]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[4]  W. Wootters Statistical distance and Hilbert space , 1981 .

[5]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[6]  B. Mielnik Theory of filters , 1969 .

[7]  M. Byrd,et al.  General open-system quantum evolution in terms of affine maps of the polarization vector , 2011 .

[8]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[9]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[10]  Rudolf Peierls,et al.  Surprises in Theoretical Physics , 1981 .

[11]  The classification of three-parameter density matrices for a qutrit , 2006 .

[12]  G. Tabia,et al.  Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .

[13]  J. Anandan,et al.  A geometric approach to quantum mechanics , 1991 .

[14]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[15]  T. Durt,et al.  Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.

[16]  Uniwersytet Jagiello,et al.  Hilbert-Schmidt volume of the set of mixed quantum states , 2003 .

[17]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[18]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[19]  W. Greiner Mathematical Foundations of Quantum Mechanics I , 1993 .

[20]  W. Hunziker SYMMETRY OPERATIONS IN QUANTUM MECHANICS. , 1972 .

[21]  Markus Grassl,et al.  Computing Equiangular Lines in Complex Space , 2008, MMICS.

[22]  Yuan Liang Lim,et al.  Multiphoton entanglement through a Bell-multiport beam splitter (8 pages) , 2005 .

[23]  A. Peres Neumark's theorem and quantum inseparability , 1990 .

[24]  C. M. Natarajan,et al.  Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. , 2011, Physical review letters.

[25]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[26]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[27]  David Marcus Appleby,et al.  Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.

[28]  David Marcus Appleby,et al.  The Lie Algebraic Significance of Symmetric Informationally Complete Measurements , 2009, 1001.0004.

[29]  Robert W. Spekkens,et al.  Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.

[30]  M. Kawachi Silica waveguides on silicon and their application to integrated-optic components , 1990 .

[31]  William K. Wootters The Acquisition of Information from Quantum Measurements. , 1980 .

[32]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[33]  M. Kreĭn,et al.  On extreme points of regular convex sets , 1940 .

[34]  G. Kimura The Bloch Vector for N-Level Systems , 2003 .

[35]  Steven T. Flammia On SIC-POVMs in prime dimensions , 2006 .

[36]  Christopher A. Fuchs,et al.  Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.

[37]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[38]  I. Porteous Clifford Algebras and the Classical Groups: The classical groups , 1995 .

[39]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[40]  A. Klappenecker,et al.  On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states , 2005, quant-ph/0503239.

[41]  Andrew D Greentree,et al.  Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.

[42]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[43]  Thomas Durt Symmetric Informationally Complete POVM tomography: theory and applications. , 2007 .

[44]  John Archibald Wheeler,et al.  How Come the Quantum? a , 1986 .

[45]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[46]  D. M. Appleby Symmetric informationally complete measurements of arbitrary rank , 2007 .

[47]  J. Rosado Representation of Quantum States as Points in a Probability Simplex Associated to a SIC-POVM , 2010, 1007.0715.

[48]  C. Fuchs,et al.  Conditions for compatibility of quantum-state assignments , 2002, quant-ph/0206110.

[49]  David Marcus Appleby,et al.  Exploring the geometry of qutrit state space using symmetric informationally complete probabilities , 2013, 1304.8075.

[50]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[51]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[52]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[53]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[54]  David Marcus Appleby,et al.  Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..

[55]  L. Jakóbczyk,et al.  Geometry of Bloch vectors in two-qubit system , 2001 .

[56]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[57]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .

[58]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Isaac H. Kim Quantumness, generalized 2-desing and symmetric informationally complete POVM , 2007, Quantum Inf. Comput..

[61]  K. Kato,et al.  Packaging of large-scale planar lightwave circuits , 1997, 1997 Proceedings 47th Electronic Components and Technology Conference.

[62]  Editors , 1986, Brain Research Bulletin.

[63]  Shayne Waldron,et al.  SOME REMARKS ON HEISENBERG FRAMES AND SETS OF EQUIANGULAR LINES , 2007 .

[64]  Marek Żukowski,et al.  Realizable higher-dimensional two-particle entanglements via multiport beam splitters , 1997 .

[65]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[66]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[67]  Dariusz Chruściński,et al.  Geometric Aspects of Quantum Mechanics and Quantum Entanglement , 2006 .

[68]  J. Neumann Mathematische Begründung der Quantenmechanik , 2022 .

[69]  Robert Fickler,et al.  Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits , 2012 .

[70]  E. Stachow An Operational Approach to Quantum Probability , 1978 .

[71]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[72]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[73]  M. Katsnelson,et al.  Parity effects in spin decoherence , 2002, quant-ph/0212097.

[74]  S. Gudder,et al.  Convex and linear effect algebras , 1999 .

[75]  E. Beltrametti,et al.  Effect algebras and statistical physical theories , 1997 .

[76]  Convex Geometry: A Travel to the Limits of Our Knowledge , 2012, 1202.2164.

[77]  Amir Kalev,et al.  Symmetric minimal quantum tomography by successive measurements , 2012 .

[78]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[79]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[80]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[81]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[82]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[83]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.

[84]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[85]  Mahdad Khatirinejad,et al.  On Weyl-Heisenberg orbits of equiangular lines , 2008 .

[86]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[87]  T. Kibble,et al.  Geometrization of quantum mechanics , 1979 .

[88]  D. Brody,et al.  Geometric quantum mechanics , 1999, quant-ph/9906086.

[89]  R. A. Fisher,et al.  On the dominance ratio , 1990 .

[90]  D. M. Appleby SIC-POVMs and the Extended Clifford Group , 2004 .

[91]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[92]  A Matrix Proof of Newton's Identities , 2000 .

[93]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[94]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[95]  J. V. Corbett,et al.  About SIC POVMs and discrete Wigner distributions , 2005 .

[96]  Andrzej Kossakowski,et al.  The Bloch-Vector Space for N-Level Systems: the Spherical-Coordinate Point of View , 2005, Open Syst. Inf. Dyn..

[97]  Matthew F Pusey,et al.  On the reality of the quantum state , 2011, Nature Physics.

[98]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[99]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[100]  Ingemar Bengtsson,et al.  From SICs and MUBs to Eddington , 2010, 1103.2030.

[101]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[102]  K. Życzkowski,et al.  Geometry of the Set of Mixed Quantum States: An Apophatic Approach , 2011, 1112.2347.

[103]  I. Segal Irreducible representations of operator algebras , 1947 .

[104]  Paul Busch,et al.  Informationally complete sets of physical quantities , 1991 .

[105]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[106]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[107]  Xinhua Peng,et al.  Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .

[108]  N. Linden,et al.  Parts of quantum states , 2004, quant-ph/0407117.

[109]  C. Kurtsiefer,et al.  Experimental Polarization State Tomography using Optimal Polarimeters , 2006, quant-ph/0603126.

[110]  M. B. Plenio,et al.  Tripartite entanglement and quantum relative entropy , 2000 .

[111]  David Applebaum Probability and information , 1996 .

[112]  D. M. Appleby,et al.  Properties of QBist State Spaces , 2009, 0910.2750.

[113]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[114]  Christopher A. Fuchs,et al.  On the quantumness of a hilbert space , 2004, Quantum information & computation.

[115]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using SIC-POVMs , 2010 .

[116]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[117]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[118]  A. Uhlmann,et al.  Geometry of State Spaces , 2009 .

[119]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[120]  G. Sarbicki,et al.  Dissecting the qutrit , 2012, 1208.2118.

[121]  George W. Mackey,et al.  Quantum Mechanics and Hilbert Space , 1957 .

[122]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[123]  A. J. Scott,et al.  SIC-POVMs: A new computer study , 2009 .

[124]  M Fitzi,et al.  Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.

[125]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[126]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[127]  Jeffrey Bub,et al.  Interpreting the Quantum World , 1997 .

[128]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .