Geometry of Quantum States from Symmetric Informationally Complete Probabilities
暂无分享,去创建一个
[1] O. Alibart,et al. A quantum relay chip based on telecommunication integrated optics technology , 2011 .
[2] Paulo E. M. F. Mendonca,et al. Alternative fidelity measure between quantum states , 2008, 0806.1150.
[3] A. J. Scott. Tight informationally complete quantum measurements , 2006, quant-ph/0604049.
[4] W. Wootters. Statistical distance and Hilbert space , 1981 .
[5] Huangjun Zhu. SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.
[6] B. Mielnik. Theory of filters , 1969 .
[7] M. Byrd,et al. General open-system quantum evolution in terms of affine maps of the polarization vector , 2011 .
[8] K. Życzkowski,et al. Geometry of Quantum States , 2007 .
[9] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[10] Rudolf Peierls,et al. Surprises in Theoretical Physics , 1981 .
[11] The classification of three-parameter density matrices for a qutrit , 2006 .
[12] G. Tabia,et al. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .
[13] J. Anandan,et al. A geometric approach to quantum mechanics , 1991 .
[14] W. Wootters. Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.
[15] T. Durt,et al. Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.
[16] Uniwersytet Jagiello,et al. Hilbert-Schmidt volume of the set of mixed quantum states , 2003 .
[17] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[18] C. Fuchs. Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.
[19] W. Greiner. Mathematical Foundations of Quantum Mechanics I , 1993 .
[20] W. Hunziker. SYMMETRY OPERATIONS IN QUANTUM MECHANICS. , 1972 .
[21] Markus Grassl,et al. Computing Equiangular Lines in Complex Space , 2008, MMICS.
[22] Yuan Liang Lim,et al. Multiphoton entanglement through a Bell-multiport beam splitter (8 pages) , 2005 .
[23] A. Peres. Neumark's theorem and quantum inseparability , 1990 .
[24] C. M. Natarajan,et al. Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. , 2011, Physical review letters.
[25] M. Born. Zur Quantenmechanik der Stoßvorgänge , 1926 .
[26] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[27] David Marcus Appleby,et al. Properties of the extended Clifford group with applications to SIC-POVMs and MUBs , 2009, 0909.5233.
[28] David Marcus Appleby,et al. The Lie Algebraic Significance of Symmetric Informationally Complete Measurements , 2009, 1001.0004.
[29] Robert W. Spekkens,et al. Einstein, Incompleteness, and the Epistemic View of Quantum States , 2007, 0706.2661.
[30] M. Kawachi. Silica waveguides on silicon and their application to integrated-optic components , 1990 .
[31] William K. Wootters. The Acquisition of Information from Quantum Measurements. , 1980 .
[32] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[33] M. Kreĭn,et al. On extreme points of regular convex sets , 1940 .
[34] G. Kimura. The Bloch Vector for N-Level Systems , 2003 .
[35] Steven T. Flammia. On SIC-POVMs in prime dimensions , 2006 .
[36] Christopher A. Fuchs,et al. Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.
[37] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[38] I. Porteous. Clifford Algebras and the Classical Groups: The classical groups , 1995 .
[39] D. Gottesman. The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.
[40] A. Klappenecker,et al. On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states , 2005, quant-ph/0503239.
[41] Andrew D Greentree,et al. Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.
[42] C. Fuchs. QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.
[43] Thomas Durt. Symmetric Informationally Complete POVM tomography: theory and applications. , 2007 .
[44] John Archibald Wheeler,et al. How Come the Quantum? a , 1986 .
[45] E. Prugovec̆ki. Information-theoretical aspects of quantum measurement , 1977 .
[46] D. M. Appleby. Symmetric informationally complete measurements of arbitrary rank , 2007 .
[47] J. Rosado. Representation of Quantum States as Points in a Probability Simplex Associated to a SIC-POVM , 2010, 1007.0715.
[48] C. Fuchs,et al. Conditions for compatibility of quantum-state assignments , 2002, quant-ph/0206110.
[49] David Marcus Appleby,et al. Exploring the geometry of qutrit state space using symmetric informationally complete probabilities , 2013, 1304.8075.
[50] Aidan Roy,et al. Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..
[51] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[52] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .
[53] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.
[54] David Marcus Appleby,et al. Linear dependencies in Weyl–Heisenberg orbits , 2013, Quantum Inf. Process..
[55] L. Jakóbczyk,et al. Geometry of Bloch vectors in two-qubit system , 2001 .
[56] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[57] И.М. Гельфанд,et al. On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .
[58] A. Politi,et al. Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.
[59] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[60] Isaac H. Kim. Quantumness, generalized 2-desing and symmetric informationally complete POVM , 2007, Quantum Inf. Comput..
[61] K. Kato,et al. Packaging of large-scale planar lightwave circuits , 1997, 1997 Proceedings 47th Electronic Components and Technology Conference.
[62] Editors , 1986, Brain Research Bulletin.
[63] Shayne Waldron,et al. SOME REMARKS ON HEISENBERG FRAMES AND SETS OF EQUIANGULAR LINES , 2007 .
[64] Marek Żukowski,et al. Realizable higher-dimensional two-particle entanglements via multiport beam splitters , 1997 .
[65] K. Miura,et al. Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.
[66] Asher Peres,et al. Quantum Theory Needs No ‘Interpretation’ , 2000 .
[67] Dariusz Chruściński,et al. Geometric Aspects of Quantum Mechanics and Quantum Entanglement , 2006 .
[68] J. Neumann. Mathematische Begründung der Quantenmechanik , 2022 .
[69] Robert Fickler,et al. Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits , 2012 .
[70] E. Stachow. An Operational Approach to Quantum Probability , 1978 .
[71] J. Neumann,et al. The Logic of Quantum Mechanics , 1936 .
[72] B. Englert,et al. Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.
[73] M. Katsnelson,et al. Parity effects in spin decoherence , 2002, quant-ph/0212097.
[74] S. Gudder,et al. Convex and linear effect algebras , 1999 .
[75] E. Beltrametti,et al. Effect algebras and statistical physical theories , 1997 .
[76] Convex Geometry: A Travel to the Limits of Our Knowledge , 2012, 1202.2164.
[77] Amir Kalev,et al. Symmetric minimal quantum tomography by successive measurements , 2012 .
[78] A. Politi,et al. Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.
[79] S. Nolte,et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .
[80] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[81] R. Prevedel,et al. High-speed linear optics quantum computing using active feed-forward , 2007, Nature.
[82] Reck,et al. Experimental realization of any discrete unitary operator. , 1994, Physical review letters.
[83] C. Fuchs,et al. A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.
[84] J. Bell,et al. Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .
[85] Mahdad Khatirinejad,et al. On Weyl-Heisenberg orbits of equiangular lines , 2008 .
[86] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[87] T. Kibble,et al. Geometrization of quantum mechanics , 1979 .
[88] D. Brody,et al. Geometric quantum mechanics , 1999, quant-ph/9906086.
[89] R. A. Fisher,et al. On the dominance ratio , 1990 .
[90] D. M. Appleby. SIC-POVMs and the Extended Clifford Group , 2004 .
[91] C. Fuchs,et al. Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.
[92] A Matrix Proof of Newton's Identities , 2000 .
[93] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[94] Paul Skrzypczyk,et al. How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.
[95] J. V. Corbett,et al. About SIC POVMs and discrete Wigner distributions , 2005 .
[96] Andrzej Kossakowski,et al. The Bloch-Vector Space for N-Level Systems: the Spherical-Coordinate Point of View , 2005, Open Syst. Inf. Dyn..
[97] Matthew F Pusey,et al. On the reality of the quantum state , 2011, Nature Physics.
[98] B. Englert,et al. Quantum optical tests of complementarity , 1991, Nature.
[99] A. Vaziri,et al. Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.
[100] Ingemar Bengtsson,et al. From SICs and MUBs to Eddington , 2010, 1103.2030.
[101] N. Bohr. The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.
[102] K. Życzkowski,et al. Geometry of the Set of Mixed Quantum States: An Apophatic Approach , 2011, 1112.2347.
[103] I. Segal. Irreducible representations of operator algebras , 1947 .
[104] Paul Busch,et al. Informationally complete sets of physical quantities , 1991 .
[105] Robert W. Spekkens,et al. Foundations of Quantum Mechanics , 2007 .
[106] Ruediger Schack,et al. Quantum-Bayesian Coherence , 2009, 1301.3274.
[107] Xinhua Peng,et al. Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .
[108] N. Linden,et al. Parts of quantum states , 2004, quant-ph/0407117.
[109] C. Kurtsiefer,et al. Experimental Polarization State Tomography using Optimal Polarimeters , 2006, quant-ph/0603126.
[110] M. B. Plenio,et al. Tripartite entanglement and quantum relative entropy , 2000 .
[111] David Applebaum. Probability and information , 1996 .
[112] D. M. Appleby,et al. Properties of QBist State Spaces , 2009, 0910.2750.
[113] Christian Kurtsiefer,et al. Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.
[114] Christopher A. Fuchs,et al. On the quantumness of a hilbert space , 2004, Quantum information & computation.
[115] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using SIC-POVMs , 2010 .
[116] Christopher Ferrie,et al. Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.
[117] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .
[118] A. Uhlmann,et al. Geometry of State Spaces , 2009 .
[119] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[120] G. Sarbicki,et al. Dissecting the qutrit , 2012, 1208.2118.
[121] George W. Mackey,et al. Quantum Mechanics and Hilbert Space , 1957 .
[122] Jeremy L O'Brien,et al. Laser written waveguide photonic quantum circuits. , 2009, Optics express.
[123] A. J. Scott,et al. SIC-POVMs: A new computer study , 2009 .
[124] M Fitzi,et al. Quantum solution to the Byzantine agreement problem. , 2001, Physical review letters.
[125] D. Gottesman. Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.
[126] A. Gleason. Measures on the Closed Subspaces of a Hilbert Space , 1957 .
[127] Jeffrey Bub,et al. Interpreting the Quantum World , 1997 .
[128] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .