Noise-Driven Neocortical Interaction: A Simple Generation Mechanism for Complex Neuron Spiking

We discuss a generic scenario along which complex spiking behavior evolves in biologically realistic neural networks. Our nonlinear dynamics approach is based directly on rat neocortical in vitro recordings. Using this experimental data, we obtain a full overview on the possible spiking behaviors of pyramidal neurons that are engaged in binary interactions. Universality arguments imply that the observed spiking behaviors are largely independent from the specific properties of individual neurons; theoretical arguments and numerical experiments indicate that they should be observable in in vivo neocortical neuron networks.

[1]  P. F. Meier,et al.  Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .

[2]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[3]  L. Olsen,et al.  Chaos in biological systems. , 1985 .

[4]  P. Gaspard,et al.  Sporadicity: Between periodic and chaotic dynamical behaviors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Stoop,et al.  Chaotic family with smooth Lyapunov dependence , 1997 .

[6]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[7]  R. Stoop,et al.  Chaotic Spike Patterns Evoked by Periodic Inhibition of Rat Cortical Neurons , 1997 .

[8]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[9]  Y. Yarom,et al.  Rhythmogenesis in a hybrid system—interconnecting an olivary neuron to an analog network of coupled oscillators , 1991, Neuroscience.

[10]  Ruedi Stoop,et al.  Encounter with Chaos , 1992 .

[11]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[12]  J. D. Hunter,et al.  Resonance effect for neural spike time reliability. , 1998, Journal of neurophysiology.

[13]  F. Pasemann Discrete dynamics of two neuron networks , 1993 .

[14]  L. Bunimovich,et al.  ON ONE MECHANISM OF TRANSITION TO CHAOS IN LATTICE DYNAMICAL SYSTEMS , 1997 .

[15]  Hatsuo Hayashi,et al.  Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro , 1995, Brain Research.

[16]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[17]  Michael L. Hines,et al.  The Neuron Simulation Program , 1994 .

[18]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[19]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[20]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[21]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[22]  A. Reyes,et al.  Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. , 1993, Journal of neurophysiology.

[23]  R. Douglas,et al.  The role of synapses in cortical computation , 1996, Journal of neurocytology.

[24]  J. Guckenheimer,et al.  Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos , 1991 .

[25]  Leonid A. Bunimovich,et al.  Coupled map lattices: one step forward and two steps back Physica D 86 , 1995 .

[26]  R. Stoop The Diffusion-Related Entropy Function: The Enhanced Case , 1995 .

[27]  Frank Pasemann,et al.  Characterization of periodic attractors in neural ring networks , 1995, Neural Networks.

[28]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[29]  U. an der Heiden,et al.  The dynamics of recurrent inhibition , 1984, Journal of mathematical biology.

[30]  Leonid A. Bunimovich,et al.  Spacetime chaos in coupled map lattices , 1988 .

[31]  M Hines,et al.  A program for simulation of nerve equations with branching geometries. , 1989, International journal of bio-medical computing.

[32]  U. Heiden Analysis Of Neural Networks , 1980 .

[33]  A. Reyes,et al.  Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. , 1993, Journal of neurophysiology.

[34]  Statistical cycling in coupled map lattices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Stoop,et al.  Thermodynamic approach to deterministic diffusion of mixed enhanced-dispersive type. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  John Argyris,et al.  Die Erforschung des Chaos , 1994 .

[37]  Rodney J. Douglas,et al.  Complex Response to Periodic Inhibition in Simple and Detailed Neuronal Models , 1999, Neural Computation.