Geometric and algebraic properties of polyomino tilings
暂无分享,去创建一个
[1] James Propp. A pedestrian approach to a method of Conway, or, a tale of two cities , 1997 .
[2] D. Welsh. Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .
[3] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[4] W. Thurston. Conway's tiling groups , 1990 .
[5] Robert Cori,et al. Shuffle of parenthesis systems and baxter permutations , 1986, J. Comb. Theory, Ser. A.
[6] J. Propp,et al. Alternating sign matrices and domino tilings , 1991, math/9201305.
[7] Igor Pak,et al. Tile invariants: new horizons , 2003, Theor. Comput. Sci..
[8] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.
[9] D. Walkup. Covering a Rectangle with T-Tetrominoes , 1965 .
[10] R. Graham,et al. On a linear diophantine problem of Frobenius , 1972 .
[11] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[12] Alistair Sinclair,et al. Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.
[13] J. Propp,et al. Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.
[14] K. Eloranta. Diamond Ice , 1999 .
[15] David Wilson,et al. Coupling from the past: A user's guide , 1997, Microsurveys in Discrete Probability.
[16] J. Propp,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .
[17] Greg Kuperberg,et al. Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .
[18] Igor Pak,et al. Ribbon tile invariants , 2000 .
[19] Cristopher Moore,et al. Ribbon Tile Invariants from the Signed Area , 2002, J. Comb. Theory, Ser. A.
[20] Claire Mathieu,et al. Tiling a polygon with rectangles , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[21] Greg Kuperberg,et al. Alternating-Sign Matrices and Domino Tilings (Part II) , 1992 .
[22] James Gary Propp. Generating random elements of finite distributive lattices , 1997, Electron. J. Comb..
[23] James Gary Propp,et al. The Many Faces of Alternating-Sign Matrices , 2002, DM-CCG.
[24] Eric Rémila. Tiling a Polygon with Two Kinds of Rectangles , 2004, ESA.