Visual Simulation of Multiple Fluids in Computer Graphics: A State-of-the-Art Report

Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.

[1]  Nipun Kwatra,et al.  Physics-Based Subsurface Visualization of Human Tissue , 2007 .

[2]  Matthias Teschner,et al.  Rendering of Bézier Surfaces on Handheld Devices , 2013, J. WSCG.

[3]  Günther Greiner,et al.  Simulation and Rendering of Liquid Foams , 2002, Graphics Interface.

[4]  Dimitris N. Metaxas,et al.  Physics based boiling simulation , 2006, SCA '06.

[5]  Xing Mei,et al.  Interactive visual simulation of dynamic ink diffusion effects , 2011, VRCAI '11.

[6]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[7]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[8]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[9]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[10]  Miguel A. Otaduy,et al.  Position-based Methods for the Simulation of Solid Objects in Computer Graphics , 2013, Eurographics.

[11]  Bo Ren,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015, ACM Trans. Graph..

[12]  Yoshinori Dobashi,et al.  Feedback control of cumuliform cloud formation based on computational fluid dynamics , 2008, ACM Trans. Graph..

[13]  Soon Hyoung Pyo,et al.  Bubbling and frothing liquids , 2007, SIGGRAPH 2007.

[14]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[15]  Miguel A. Otaduy,et al.  DYVERSO: A Versatile Multi‐Phase Position‐Based Fluids Solution for VFX , 2017, Comput. Graph. Forum.

[16]  Paul W. Cleary,et al.  Bubbling and frothing liquids , 2007, ACM Trans. Graph..

[17]  Matthias Teschner,et al.  Generalized drag force for particle-based simulations , 2017, Comput. Graph..

[18]  Matthias Teschner,et al.  Animation of Air Bubbles with SPH , 2011, GRAPP.

[19]  Wolfgang Heidrich,et al.  From capture to simulation , 2014, ACM Trans. Graph..

[20]  Zhong Zhou,et al.  Particle‐based simulation of bubbles in water–solid interaction , 2012, Comput. Animat. Virtual Worlds.

[21]  Sung Yong Shin,et al.  A Hybrid Approach to Multiple Fluid Simulation using Volume Fractions , 2010, Comput. Graph. Forum.

[22]  Dimitris N. Metaxas,et al.  Simulation of two‐phase flow with sub‐scale droplet and bubble effects , 2009, Comput. Graph. Forum.

[23]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[24]  Greg Turk,et al.  Animating Corrosion and Erosion , 2007, NPH.

[25]  Ronald Fedkiw,et al.  Melting and burning solids into liquids and gases , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[27]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[28]  Ralph R. Martin,et al.  Versatile interactions at interfaces for SPH-based simulations , 2016, Symposium on Computer Animation.

[29]  T. Nishita,et al.  Visual simulation of freezing ice with air bubbles , 2012, SIGGRAPH Asia Technical Briefs.

[30]  Ralph R. Martin,et al.  A unified particle system framework for multi-phase, multi-material visual simulations , 2017, ACM Trans. Graph..

[31]  Shuangjiu Xiao,et al.  Particle-based ice freezing simulation , 2015, VRCAI.

[32]  Aimin Hao,et al.  A novel fluid-solid coupling framework integrating FLIP and shape matching methods , 2017, CGI.

[33]  Erik Reinhard,et al.  Real-time fluid simulation using discrete sine/cosine transforms , 2009, I3D '09.

[34]  Ming C. Lin,et al.  Feature-Guided Dynamic Texture Synthesis on Continuous Flows , 2007, Rendering Techniques.

[35]  HuShi-Min,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014 .

[36]  Jeong-Mo Hong,et al.  Discontinuous fluids , 2005, SIGGRAPH 2005.

[37]  Ming C. Lin,et al.  Modeling Ice Dynamics As A Thin-Film Stefan Problem , 2006 .

[38]  Hyeong-Seok Ko,et al.  Geometry‐Aware Volume‐of‐Fluid Method , 2013, Comput. Graph. Forum.

[39]  Donald H. House,et al.  Better with bubbles: enhancing the visual realism of simulated fluid , 2004, SCA '04.

[40]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[41]  Yoshinori Dobashi,et al.  Physics motivated modeling of volcanic clouds as a two fluids model , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[42]  Chang-Hun Kim,et al.  Hybrid Simulation of Miscible Mixing with Viscous Fingering , 2010, Comput. Graph. Forum.

[43]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[44]  Bo Ren,et al.  A simple approach for bubble modelling from multiphase fluid simulation , 2015, Computational Visual Media.

[45]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[46]  Yiying Tong,et al.  A variational approach to Eulerian geometry processing , 2007, ACM Trans. Graph..

[47]  Ronald Fedkiw,et al.  A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics , 2013, SCA '13.

[48]  Ralph R. Martin,et al.  Pairwise Force SPH Model for Real-Time Multi-Interaction Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[49]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[50]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[51]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[52]  Joshua A. Levine,et al.  Lattice Cleaving: A Multimaterial Tetrahedral Meshing Algorithm with Guarantees , 2014, IEEE Transactions on Visualization and Computer Graphics.

[53]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[54]  Markus H. Gross,et al.  Two-scale particle simulation , 2011, ACM Trans. Graph..

[55]  Arnauld Lamorlette,et al.  Structural modeling of flames for a production environment , 2002, SIGGRAPH.

[56]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[57]  Chang-Hun Kim,et al.  Physics-inspired controllable flame animation , 2016, The Visual Computer.

[58]  Toshiya Hachisuka,et al.  A hyperbolic geometric flow for evolving films and foams , 2017, ACM Trans. Graph..

[59]  Insung Ihm,et al.  Animation of reactive gaseous fluids through chemical kinetics , 2004, SCA '04.

[60]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[61]  Matthias Teschner,et al.  Liquid boundaries for implicit incompressible SPH , 2015, Comput. Graph..

[62]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[63]  Hyeong-Seok Ko,et al.  Stable but nondissipative water , 2005, TOGS.

[64]  Duc Quang Nguyen,et al.  Physically based modeling and animation of fire , 2002, ACM Trans. Graph..

[65]  Klaus Mueller,et al.  Melting and flowing in multiphase environment , 2006, Comput. Graph..

[66]  Matthias Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[67]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. , 2012, IEEE transactions on visualization and computer graphics.

[68]  Wook Kim,et al.  Physics-inspired approach to realistic and stable water spray with narrowband air particles , 2018, The Visual Computer.

[69]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[70]  Ole Østerby,et al.  A two-continua approach to Eulerian simulation of water spray , 2013, ACM Trans. Graph..

[71]  Chang-Hun Kim,et al.  Discontinuous fluids , 2005, ACM Trans. Graph..

[72]  Yoshinori Dobashi,et al.  Simulation of Cumuliform Clouds Based on Computational Fluid Dynamics , 2002, Eurographics.

[73]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[74]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[75]  Tao Yang,et al.  Solid deformation by material point method , 2016, Commun. Inf. Syst..

[76]  Xiaopei Liu,et al.  A Unified Detail-Preserving Liquid Simulation by Two-Phase Lattice Boltzmann Modeling , 2017, IEEE Transactions on Visualization and Computer Graphics.

[77]  Chang-Hun Kim,et al.  Visual simulation of fire-flakes synchronized with flame , 2017, The Visual Computer.

[78]  Ken-ichi Anjyo,et al.  Fluid volume modeling from sparse multi-view images by appearance transfer , 2015, ACM Trans. Graph..

[79]  Bo Ren,et al.  Fast SPH simulation for gaseous fluids , 2016, The Visual Computer.

[80]  Aimin Hao,et al.  Hybrid Particle‐grid Modeling for Multi‐scale Droplet/Spray Simulation , 2014, Comput. Graph. Forum.

[81]  Bedrich Benes,et al.  Physically-based hydraulic erosion , 2006, SCCG.

[82]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[83]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[84]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[85]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[86]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[87]  Christopher Wojtan,et al.  A stream function solver for liquid simulations , 2015, ACM Trans. Graph..

[88]  Takashi Kanai,et al.  Procedural fluid modeling of explosion phenomena based on physical properties , 2011, SCA '11.

[89]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[90]  M. Manninen,et al.  On the mixture model for multiphase flow , 1996 .

[91]  Yee-Hong Yang,et al.  Particle-based immiscible fluid-fluid collision , 2006, Graphics Interface.

[92]  Bo Ren,et al.  Real-Time High-Fidelity Surface Flow Simulation , 2018, IEEE Transactions on Visualization and Computer Graphics.

[93]  Hyeongseok Ko,et al.  A practical simulation of dispersed bubble flow , 2010 .

[94]  Enhua Wu,et al.  Volume fraction based miscible and immiscible fluid animation , 2010, Comput. Animat. Virtual Worlds.

[95]  Klaus Mueller,et al.  Simulating fire with texture splats , 2002, IEEE Visualization, 2002. VIS 2002..

[96]  Nipun Kwatra,et al.  Texturing Fluids , 2006, IEEE Transactions on Visualization and Computer Graphics.

[97]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[98]  Aimin Hao,et al.  A novel integrated analysis-and-simulation approach for detail enhancement in FLIP fluid interaction , 2015, VRST.

[99]  Yoshinori Dobashi,et al.  Controlling the Simulation of Cumuliform Clouds Based on Fluid Dynamics , 2015, IEICE Trans. Inf. Syst..

[100]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[101]  Jun-Hai Yong,et al.  Visual Simulation of Multiple Unmixable Fluids , 2007, Journal of Computer Science and Technology.

[102]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[103]  Xing Mei,et al.  Real-time ink simulation using a grid-particle method , 2012, Comput. Graph..

[104]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[105]  QinHong,et al.  Hybrid Particle-grid Modeling for Multi-scale Droplet/Spray Simulation , 2014 .

[106]  Chiew-Lan Tai,et al.  MoXi: real-time ink dispersion in absorbent paper , 2005, SIGGRAPH '05.

[107]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[108]  Ming C. Lin,et al.  Visual simulation of ice crystal growth , 2003, SCA '03.

[109]  G. Turk,et al.  Physically guided liquid surface modeling from videos , 2009, SIGGRAPH 2009.

[110]  Theodore Kim,et al.  A simple boiling module , 2007, SCA '07.

[111]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[112]  Takahiro Saito,et al.  Realistic Animation of Fluid with Splash and Foam , 2003, Comput. Graph. Forum.

[113]  Pierre Boulanger,et al.  Digital marbling: a multiscale fluid model , 2006, IEEE Transactions on Visualization and Computer Graphics.

[114]  Kenjiro T. Miura,et al.  Animation of ice melting phenomenon based on thermodynamics with thermal radiation , 2004, GRAPHITE '07.

[115]  Paul W. Cleary,et al.  A new approach to boiling simulation using a discrete particle based method , 2015, Comput. Graph..

[116]  Enhua Wu,et al.  Multiphase surface tracking with explicit contouring , 2014, VRST '14.

[117]  Enhua Wu,et al.  Stable and efficient miscible liquid-liquid interactions , 2007, VRST '07.

[118]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[119]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[120]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[121]  Insung Ihm,et al.  Animation of chemically reactive fluids using a hybrid simulation method , 2007, SCA '07.

[122]  Ralph R. Martin,et al.  Multiphase SPH simulation for interactive fluids and solids , 2016, ACM Trans. Graph..

[123]  Sung Yong Shin,et al.  A unified handling of immiscible and miscible fluids , 2008, Comput. Animat. Virtual Worlds.

[124]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[125]  Insung Ihm,et al.  Practical animation of turbulent splashing water , 2006, Symposium on Computer Animation.

[126]  Chang-Hun Kim,et al.  Controlling shapes of air bubbles in a multi-phase fluid simulation , 2012, The Visual Computer.

[127]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[128]  内海 孝信,et al.  私の留学体験記 The University of North Carolina at Chapel Hill , 2019 .

[129]  Qunsheng Peng,et al.  Realistic simulation of mixing fluids , 2011, The Visual Computer.

[130]  Jun-Hai Yong,et al.  Simulation of bubbles , 2006, SCA '06.

[131]  Huamin Wang,et al.  Animating bubble interactions in a liquid foam , 2012, ACM Trans. Graph..

[132]  Andreas Kolb,et al.  Consistent surface model for SPH-based fluid transport , 2013, SCA '13.

[133]  Jessica K. Hodgins,et al.  Animating explosions , 2000, SIGGRAPH.

[134]  Luka Cindro,et al.  Real-time cloud simulation and rendering , 2013 .

[135]  Matthias Teschner,et al.  IISPH‐FLIP for incompressible fluids , 2014, Comput. Graph. Forum.

[136]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[137]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[138]  Ming C. Lin,et al.  A hybrid algorithm for modeling ice formation , 2004, SCA '04.

[139]  Jeong-Mo Hong,et al.  Bubbles alive , 2008, SIGGRAPH 2008.

[140]  Enhua Wu,et al.  Simulation of miscible binary mixtures based on lattice Boltzmann method , 2006, Comput. Animat. Virtual Worlds.

[141]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[142]  Eitan Grinspun,et al.  Multimaterial mesh-based surface tracking , 2014, ACM Trans. Graph..

[143]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[144]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Real-time Simulations of Bubbles and Foam within a Shallow Water Framework , 2022 .

[145]  Huamin Wang,et al.  Simulation of fluid mixing with interface control , 2015, Symposium on Computer Animation.

[146]  Xiao-Juan Ban,et al.  Surface Tension Model Based on Implicit Incompressible Smoothed Particle Hydrodynamics for Fluid Simulation , 2017, Journal of Computer Science and Technology.

[147]  JungHyun Han,et al.  Muddy water animation with different details , 2015, Comput. Animat. Virtual Worlds.

[148]  James F. O'Brien,et al.  Animating suspended particle explosions , 2003, ACM Trans. Graph..

[149]  Wolfgang Heidrich,et al.  Stochastic tomography and its applications in 3D imaging of mixing fluids , 2012, ACM Trans. Graph..

[150]  Byungmoon Kim,et al.  Multi-phase fluid simulations using regional level sets , 2010, ACM Trans. Graph..

[151]  Chang-Hun Kim,et al.  Simulation of swirling bubbly water using bubble particles , 2009, The Visual Computer.

[152]  Enhua Wu,et al.  A particle-based method for viscoelastic fluids animation , 2009, VRST '09.