Biometrical Models as Tools for Forest Ecosystem Management

This paper sketches how forest management functions in Europe and how knowledge about forest ecosystems can be instilled into the planning process via models. Simulation models support decisions by scenario analysis, which display the consequences of management options with respect to decisive system variables. While elsewhere plantations for intensive wood-production are separated from forests for conservation, in European forests a multitude of functions is integrated. This concept requires models, which quantify the ecological, economical, and social consequences of treatment options. The required information can be delivered by hybrid models, which are on the one hand simple enough with respect to input data, driving variables, and application, on the other hand sufficiently mechanistic in order to display matter and energy flow. Recommendations are given for a convergence of empirical and mechanistic models, for integration of models into the information flow of management, and for a successful transfer of scientific knowledge to end-users.

[1]  A. Komarov,et al.  Modeling dynamics of forest ground vegetation diversity under different forest management regimes , 2007 .

[2]  Hans Pretzsch,et al.  Effects of environmental changes on the vitality of forest stands , 2005, European Journal of Forest Research.

[3]  Joe Landsberg,et al.  Modelling forest ecosystems: state of the art, challenges, and future directions , 2003 .

[4]  Hans Pretzsch,et al.  A Model for Individual Tree Development Based on Physiological Processes , 2002 .

[5]  S. Seifert,et al.  Methoden zur Visualisierung des Waldwachstums , 2000, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[6]  S. Yaffee Three Faces of Ecosystem Management , 1999 .

[7]  Hartmut Bossel,et al.  treedyn3 forest simulation model , 1996 .

[8]  Pertti Hari,et al.  Stand growth model based on carbon uptake and allocation in individual trees , 1986 .

[9]  L. Pienaar,et al.  The Chapman-Richards Generalization of Von Bertalanffy's Growth Model for Basal Area Growth and Yield in Even - Aged Stands , 1973 .

[10]  John W. Moser,et al.  Dynamics of an Uneven-Aged Forest Stand , 1972 .

[11]  E. Assmann,et al.  Vorläufige Fichten-Ertragstafel für Bayern , 2005, Forstwissenschaftliches Centralblatt.

[12]  H. Pretzscha,et al.  The single tree-based stand simulator SILVA : construction , application and evaluation , 2002 .

[13]  Hans Pretzsch,et al.  Modellierung des Waldwachstums , 2001 .

[14]  Winfried Kurth,et al.  Die Simulation der Baumarchitektur mit Wachstumsgrammatiken , 1999 .

[15]  Taneli Kolström,et al.  Modelling the development of an uneven‐aged stand of Picea abies , 1993 .

[16]  J. P. Kimmins Scientific foundations for the simulation of ecosystem function and managment in FORCYTE-11 , 1993 .

[17]  H. Shugart A Theory of Forest Dynamics , 1984 .

[18]  H. Shugart A Theory of Forest Dynamics , 1984 .

[19]  R. A. Leary,et al.  System identification principles in studies of forest dynamics. , 1970 .

[20]  P. E. Waggoner,et al.  The forests anticipated from 40 years of natural transitions in mixed hardwoods. , 1970 .

[21]  Lino Della-Bianca,et al.  Diameter Distributions in Natural Yellow-Poplar Stands , 1967 .

[22]  Takeo Umemura,et al.  Forest Transition as A Stochastic Process (V) , 1967 .

[23]  R. M. Newnham The development of a stand model for Douglas fir , 1964 .

[24]  A. Schwappach Wachstum und Ertrag normaler Rotbuchenbestände : nach den Aufnahmen der Preussischen Hauptstation des forstlichen Versuchswesens , 1893 .