A tighter upper bound for random MAX 2-SAT
暂无分享,去创建一个
[1] Dimitris Achlioptas,et al. THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.
[2] Rolf Niedermeier,et al. New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.
[3] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[4] Edward A. Hirsch,et al. A New Algorithm for MAX-2-SAT , 2000, STACS.
[5] Robert E. Tarjan,et al. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..
[6] David Gamarnik,et al. Random MAX SAT, random MAX CUT, and their phase transitions , 2003 .
[7] Hantao Zhang,et al. An Empirical Study of MAX-2-SAT Phase Transitions , 2003, Electron. Notes Discret. Math..
[8] Edward A. Hirsch,et al. New Worst-Case Upper Bounds for SAT , 2000, Journal of Automated Reasoning.
[9] Rolf Niedermeier,et al. Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT , 2003, Discret. Appl. Math..
[10] Venkatesh Raman,et al. Upper Bounds for MaxSat: Further Improved , 1999, ISAAC.
[11] Béla Bollobás,et al. The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.
[12] Yuval Peres,et al. The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.
[13] Wei Li,et al. Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..
[14] Johan Håstad,et al. Some optimal inapproximability results , 2001, JACM.