Excitation intensity dependence of lateral photocurrent in InGaAs/GaAs dot-chain structures

[1]  G. Salamo,et al.  State filling dependent luminescence in hybrid tunnel coupled dot-well structures. , 2012, Nanoscale.

[2]  G. Salamo,et al.  Photoconductivity peculiarities in InGaAs quantum wire heterostructures: anisotropy and high photoresponsivity at room temperature , 2012 .

[3]  G. Salamo,et al.  Laterally aligned quantum rings: From one-dimensional chains to two-dimensional arrays , 2012 .

[4]  S. Golovynskyi,et al.  Effect of carrier capture by deep levels on lateral photoconductivity of InGaAs/GaAs quantum dot structures , 2011 .

[5]  F. Qu,et al.  Nonlinear effects of the photocurrent in self-assembled InAs/GaAs quantum dots , 2011 .

[6]  J. Krasinski,et al.  Interface roughness scattering in laterally coupled InGaAs quantum wires , 2010 .

[7]  A. Govorov,et al.  Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy , 2010 .

[8]  A. Madhukar,et al.  Deep levels in GaAs(001)/InAs/InGaAs/GaAs self-assembled quantum dot structures and their effect on quantum dot devices , 2010 .

[9]  M. O. Manasreh,et al.  Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. , 2010, Nano letters.

[10]  M. Hopkinson,et al.  Anomalous photocurrent in self-assembled InAs∕GaAs quantum dots , 2008 .

[11]  S. Ostapenko,et al.  Carrier dynamics in InAs quantum dots embedded in InGaAs/GaAs multi quantum well structures , 2007 .

[12]  C. D. Farmer,et al.  Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell. , 2006, Physical review letters.

[13]  G. Salamo,et al.  Time-resolved photoluminescence spectroscopy of subwetting layer states in InGaAs /GaAs quantum dot structures , 2006 .

[14]  Matthew B. Johnson,et al.  Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAs∕GaAs quantum well , 2006 .

[15]  C. Shih,et al.  Direct spectroscopic evidence for the formation of one-dimensional wetting wires during the growth of InGaAs/GaAs quantum dot chains. , 2006, Nano letters.

[16]  Anthony R. Peaker,et al.  Coexistence of deep levels with optically active InAs quantum dots , 2005 .

[17]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[18]  H. Liu,et al.  Quantum dot infrared photodetectors , 2003 .

[19]  Shiang-Feng Tang,et al.  Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector , 2001 .

[20]  Antonio Luque,et al.  A metallic intermediate band high efficiency solar cell , 2001 .

[21]  Hooman Mohseni,et al.  Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector , 1998 .

[22]  R. Farrow Molecular Beam Epitaxy: Applications to Key Materials , 1995 .

[23]  Leitch,et al.  Thermally activated carrier escape mechanisms from InxGa1-xAs/GaAs quantum wells. , 1994, Physical review. B, Condensed matter.

[24]  Fischer,et al.  Infrared absorption properties of the EL2 and the isolated AsGa defects in neutron-transmutation-doped GaAs: Generation of an EL2-like defect. , 1989, Physical review. B, Condensed matter.

[25]  M. Kamińska Optical properties of EL2 , 1988 .

[26]  M. Skowronski,et al.  Intracenter transitions in the dominant deep level (EL2) in GaAs , 1983 .

[27]  A. Mircea,et al.  Electron traps in bulk and epitaxial GaAs crystals , 1977 .

[28]  J. Song,et al.  Electrical Properties of InAs/InGaAs/GaAs Quantum-Dot Infrared Photodetectors , 2005, Digest of Papers Microprocesses and Nanotechnology 2005.

[29]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .