Origamizing Polyhedral Surfaces

This paper presents the first practical method for "origamizing¿ or obtaining the folding pattern that folds a single sheet of material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape. The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern. Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex spatial origami models that have not been realizable thus far.

[1]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[2]  Marshall W. Bern,et al.  The complexity of flat origami , 1996, SODA '96.

[3]  Johannes Wallner,et al.  Freeform surfaces from single curved panels , 2008, ACM Trans. Graph..

[4]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[5]  Eric Gjerde,et al.  Origami Tessellations: Awe-Inspiring Geometric Designs , 2008 .

[6]  Marshall W. Bern,et al.  Origami Embedding of Piecewise-Linear Two-Manifolds , 2008, LATIN.

[7]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[8]  Erik D. Demaine,et al.  Folding and Cutting Paper , 1998, JCDCG.

[9]  Ghassan Hamarneh,et al.  Contour Correspondence via Ant Colony Optimization , 2007 .

[10]  Alex Bateman Computer Tools and Algorithms for Origami Tessellation Design , 2002 .

[11]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[12]  John Lobell The Milgo experiment: an interview with Haresh Lalvani , 2006 .

[13]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[14]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[15]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[16]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[17]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[18]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[19]  Tomohiro Tachi,et al.  3D Origami Design based on Tucking Molecule , 2008 .

[20]  Eitan Grinspun,et al.  Discrete Shells Origami , 2006, CATA.

[21]  Martin Kilian,et al.  Curved folding , 2008, ACM Trans. Graph..

[22]  M. Bern A Disk-Packing Algorithm for an Origami Magic Trick , 2007 .

[23]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[24]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[25]  Johannes Wallner,et al.  Geometric Modeling with Conical Meshes and Developable Surfaces , 2006, ACM Trans. Graph..

[26]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[27]  David A. Huffman,et al.  Curvature and Creases: A Primer on Paper , 1976, IEEE Transactions on Computers.

[28]  Henrik Wann Jensen A Photon Map Implementation in C , 2001 .

[29]  Tosiyasu L. Kunii,et al.  Bending and creasing virtual paper , 1994, IEEE Computer Graphics and Applications.

[30]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[31]  Thomas C. Hull,et al.  A Mathematical Model for Non-Flat Origami , 2002 .

[32]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1994, SCG '94.

[33]  Charlie C. L. Wang Towards flattenable mesh surfaces , 2008, Comput. Aided Des..

[34]  Gershon Elber,et al.  Papercraft Models using Generalized Cylinders , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[35]  Erik D. Demaine,et al.  Geometric folding algorithms - linkages, origami, polyhedra , 2007 .

[36]  Gershon Elber,et al.  Piecewise Developable Surface Approximation of General NURBS Surfaces, with Global Error Bounds , 2006, GMP.

[37]  Kun Zhou,et al.  BSGP: bulk-synchronous GPU programming , 2008, SIGGRAPH 2008.

[38]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .