Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries

The ionic conductivity and interfacial impedance can be simultaneously improved by the reactivity-guided formulation of a composite solid polymer electrolyte with the polyethylene oxide host, PPC additive and ceramic filler.

[1]  Y. Lei,et al.  A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance , 2020, Nanotechnology.

[2]  Huan Wang,et al.  Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. , 2020, Chemical Society reviews.

[3]  Huan Wang,et al.  Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes , 2019, Journal of Materials Chemistry A.

[4]  Li Lu,et al.  Development of solid-state electrolytes for sodium-ion battery–A short review , 2019, Nano Materials Science.

[5]  Huan Wang,et al.  Enabling Safe Sodium Metal Batteries by Solid Electrolyte Interphase Engineering: A Review , 2019, Industrial & Engineering Chemistry Research.

[6]  A. Manthiram,et al.  Sodium-based batteries: from critical materials to battery systems , 2019, Journal of Materials Chemistry A.

[7]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[8]  David G. Mackanic,et al.  Designing polymers for advanced battery chemistries , 2019, Nature Reviews Materials.

[9]  Xiaofei Yang,et al.  Rational Design of Hierarchical “Ceramic‐in‐Polymer” and “Polymer‐in‐Ceramic” Electrolytes for Dendrite‐Free Solid‐State Batteries , 2019, Advanced Energy Materials.

[10]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[11]  Huan Wang,et al.  Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability. , 2019, ACS applied materials & interfaces.

[12]  Yong Lu,et al.  Electrolyte and Interface Engineering for Solid-State Sodium Batteries , 2018, Joule.

[13]  Yunhui Huang,et al.  Electrode Materials of Sodium-Ion Batteries toward Practical Application , 2018, ACS Energy Letters.

[14]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[15]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[16]  F. Ding,et al.  Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium–sulfur batteries , 2018 .

[17]  Qi Li,et al.  Recent Progress of the Solid‐State Electrolytes for High‐Energy Metal‐Based Batteries , 2018 .

[18]  H. Yue,et al.  Sandwich-Like Poly(propylene carbonate)-Based Electrolyte for Ambient-Temperature Solid-State Lithium Ion Batteries , 2018 .

[19]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[20]  F. Ding,et al.  Recent advances in solid polymer electrolytes for lithium batteries , 2017, Nano Reseach.

[21]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[22]  Jian-jun Zhang,et al.  High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery , 2017 .

[23]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[24]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[25]  Yutao Li,et al.  Rechargeable Sodium All-Solid-State Battery , 2017, ACS central science.

[26]  D. Zhao,et al.  Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres. , 2016, Journal of the American Chemical Society.

[27]  F. Ding,et al.  A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries , 2016 .

[28]  Yong‐Sheng Hu,et al.  A ceramic/polymer composite solid electrolyte for sodium batteries , 2016 .

[29]  P. Kohl,et al.  Thermal decomposition of poly(propylene carbonate): End-capping, additives, and solvent effects , 2016 .

[30]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[31]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[32]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[33]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[34]  Xinhong Zhou,et al.  Safety‐Reinforced Poly(Propylene Carbonate)‐Based All‐Solid‐State Polymer Electrolyte for Ambient‐Temperature Solid Polymer Lithium Batteries , 2015 .

[35]  W. Luo,et al.  Na Metal Anode: “Holy Grail” for Room-Temperature Na-Ion Batteries? , 2015, ACS central science.

[36]  P. Johansson,et al.  Characterization of NaX (X: TFSI, FSI) – PEO based solid polymer electrolytes for sodium batteries , 2015 .

[37]  F. Bella,et al.  Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries , 2015 .

[38]  B. Hwang,et al.  Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries , 2015 .

[39]  John B. Goodenough,et al.  Review—Solid Electrolytes in Rechargeable Electrochemical Cells , 2015 .

[40]  K. Kiran Kumar,et al.  Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps , 2011 .

[41]  J. Varghese,et al.  Thermal and weathering degradation of poly(propylene carbonate) , 2010 .

[42]  Qianchuan Zhao,et al.  Fabrication and characterization of PEO/PPC polymer electrolyte for lithium‐ion battery , 2010 .

[43]  P. Bruce,et al.  Alkali metal crystalline polymer electrolytes. , 2009, Nature materials.

[44]  S. Ramesh,et al.  Conductivity and FTIR studies on PEO-LiX [X: CF3SO3(-), SO4(2-)] polymer electrolytes. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[45]  S. Dou,et al.  Nanoparticle-dispersed PEO polymer electrolytes for Li batteries , 2003 .

[46]  Min Zhang,et al.  Degradation and Stabilization of Poly(propylene carbonate) , 2002 .

[47]  Junho Ahn,et al.  Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n−1 composite polymer electrolytes for lithium/sulfur battery , 2002 .

[48]  W. Kuran,et al.  Degradation of poly(propylene carbonate) by coordination catalysts containing phenolatozinc and alcoholatozinc species , 1994 .

[49]  P. Gorecki,et al.  Degradation and depolymerization of poly(propylene carbonate) by diethylzinc , 1983 .