On Data-Selective Adaptive Filtering

The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.

[1]  Paulo S. R. Diniz,et al.  Adaptive Filtering: Algorithms and Practical Implementation , 1997 .

[2]  Bijan Jabbari,et al.  Spreading codes for direct sequence CDMA and wideband CDMA cellular networks , 1998, IEEE Commun. Mag..

[3]  Georgios B. Giannakis,et al.  Online Censoring for Large-Scale Regressions with Application to Streaming Big Data , 2015, IEEE Transactions on Signal Processing.

[4]  Stefan Werner,et al.  Set-membership affine projection algorithm with variable data-reuse factor , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[5]  Kutluyil Dogancay,et al.  Adaptive filtering algorithms with selective partial updates , 2001 .

[6]  J. R. Deller,et al.  Least-square identification with error bounds for real-time signal processing and control , 1993, Proc. IEEE.

[7]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[8]  Yih-Fang Huang,et al.  Tracking characteristics of an OBE parameter-estimation algorithm , 1993, IEEE Trans. Signal Process..

[9]  Stefan Werner,et al.  Set-membership affine projection algorithm for echo cancellation , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[10]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[11]  John J. Shynk,et al.  Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications , 2012 .

[12]  E. Hänsler,et al.  Acoustic Echo and Noise Control: A Practical Approach , 2004 .

[13]  Futoshi Asano,et al.  Detection and Separation of Speech Events in Meeting Recordings Using a Microphone Array , 2007, EURASIP J. Audio Speech Music. Process..

[14]  P. Diniz,et al.  Set-membership affine projection algorithm , 2001, IEEE Signal Processing Letters.

[15]  Stefan Werner,et al.  Partial-update NLMS algorithms with data-selective updating , 2004, IEEE Trans. Signal Process..

[16]  Ali H. Sayed,et al.  Error-energy bounds for adaptive gradient algorithms , 1996, IEEE Trans. Signal Process..

[17]  Eduardo A. B. da Silva,et al.  Digital Signal Processing: System Analysis and Design , 2002 .

[18]  Paulo S. R. Diniz,et al.  Set-membership adaptive algorithms based on time-varying error bounds and their application to interference suppression , 2006, 2006 International Telecommunications Symposium.

[19]  Sergios Theodoridis,et al.  Machine Learning: A Bayesian and Optimization Perspective , 2015 .

[20]  Yih-Fang Huang,et al.  Set-membership adaptive filtering with parameter-dependent error bound tuning , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[21]  Michel C. Jeruchim,et al.  Simulation of Communication Systems: Modeling, Methodology and Techniques , 2000 .

[22]  Tyseer Aboulnasr,et al.  Complexity reduction of the NLMS algorithm via selective coefficient update , 1999, IEEE Trans. Signal Process..

[23]  Kazuhiko Ozeki,et al.  An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties , 1984 .

[24]  Ali H. Sayed,et al.  Mean-square performance of a family of affine projection algorithms , 2004, IEEE Transactions on Signal Processing.

[25]  Brian Borchers,et al.  Review of practical optimization: algorithms and engineering applications by Andreas Antoniou and Wu-Sheng Lu (Springer Verlag, 2007) , 2009, SIGA.

[26]  John G. Proakis,et al.  Digital Communications , 1983 .

[27]  C. F. Long,et al.  Influence of the manufacturing process on the scheduling problem , 1976 .

[28]  Yih-Fang Huang,et al.  Set-membership adaptive equalization and an updator-shared implementation for multiple channel communications systems , 1998, IEEE Trans. Signal Process..

[29]  Sergios Theodoridis,et al.  Adaptive Robust Distributed Learning in Diffusion Sensor Networks , 2011, IEEE Transactions on Signal Processing.

[30]  Georgios B. Giannakis,et al.  Quickest convergence of online algorithms via data selection , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Gang Wang,et al.  Online reconstruction from big data via compressive censoring , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[32]  Kutluyil Dogancay,et al.  Partial-Update Adaptive Signal Processing: Design Analysis and Implementation , 2008 .

[33]  José Antonio Apolinário,et al.  Set-Membership Proportionate Affine Projection Algorithms , 2007, EURASIP J. Audio Speech Music. Process..

[34]  Alfred O. Hero,et al.  Partial update LMS algorithms , 2005, IEEE Transactions on Signal Processing.

[35]  Kutluyil Dogançay,et al.  Selective-partial-update NLMS and affine projection algorithms for acoustic echo cancellation , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[36]  Scott C. Douglas,et al.  Adaptive filters employing partial updates , 1997 .

[37]  Paulo S. R. Diniz,et al.  Optimal constraint vectors for set-membership affine projection algorithms , 2017, Signal Process..

[38]  J. Deller Set membership identification in digital signal processing , 1989, IEEE ASSP Magazine.

[39]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[40]  Yih-Fang Huang,et al.  BEACON: an adaptive set-membership filtering technique with sparse updates , 1999, IEEE Trans. Signal Process..

[41]  Rodrigo C. de Lamare,et al.  Set-membership adaptive algorithms based on time-varying error bounds for DS-CDMA systems , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[42]  Steven L. Gay,et al.  The fast affine projection algorithm , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[43]  Juraci Ferreira Galdino,et al.  A set-membership NLMS algorithm with time-varying error bound , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[44]  Rodrigo C. de Lamare,et al.  Low-Complexity Set-Membership Channel Estimation for Cooperative Wireless Sensor Networks , 2011, IEEE Transactions on Vehicular Technology.

[45]  José Antonio Apolinário,et al.  Convergence analysis of the binormalized data-reusing LMS algorithm , 2000, IEEE Trans. Signal Process..

[46]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[47]  Georgios B. Giannakis,et al.  Data Sketching for Large-Scale Kalman Filtering , 2016, IEEE Transactions on Signal Processing.

[48]  J.I. Smith,et al.  A computer generated multipath fading simulation for mobile radio , 1975, IEEE Transactions on Vehicular Technology.

[49]  Patrick A. Naylor,et al.  Recent advances in partial update and sparse adaptive filters , 2005, 2005 13th European Signal Processing Conference.

[50]  Pascal Scalart,et al.  Pseudo affine projection algorithm new solution for adaptive identication , 1999, EUROSPEECH.

[51]  Paulo S. R. Diniz,et al.  Convergence Performance of the Simplified Set-Membership Affine Projection Algorithm , 2011, Circuits Syst. Signal Process..

[52]  Philip E. Gill,et al.  Practical optimization , 1981 .

[53]  Yih-Fang Huang,et al.  Asymptotically convergent modified recursive least-squares with data-dependent updating and forgetting factor , 1985, 1985 24th IEEE Conference on Decision and Control.

[54]  Kazuhiko Ozeki Theory of Affine Projection Algorithms for Adaptive Filtering , 2015 .

[55]  Stefan Werner,et al.  Mean-Squared Analysis of the Partial-Update NLMS Algorithm , 2003 .

[56]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[57]  Rodrigo C. de Lamare,et al.  Set-Membership Adaptive Algorithms Based on Time-Varying Error Bounds for CDMA Interference Suppression , 2009, IEEE Transactions on Vehicular Technology.

[58]  Qing Ling,et al.  Distributed recursive least-squares with data-adaptive censoring , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[59]  Yuriy V. Zakharov,et al.  Pseudo-Affine Projection Algorithms for Multichannel Active Noise Control , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[60]  Stefan Werner,et al.  Set-membership binormalized data-reusing LMS algorithms , 2003, IEEE Trans. Signal Process..

[61]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[62]  P. Diniz,et al.  Low-complexity constrained affine-projection algorithms , 2005, IEEE Transactions on Signal Processing.

[63]  Paulo S. R. Diniz,et al.  Steady-State MSE Performance of the Set-Membership Affine Projection Algorithm , 2013, Circuits, Systems, and Signal Processing.

[64]  Rodrigo C. de Lamare,et al.  Blind Constrained Set-Membership Algorithms with Time- Varying Bounds for CDMA Interference Suppression , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[65]  Shirish Nagaraj,et al.  Set-membership filtering and a set-membership normalized LMS algorithm with an adaptive step size , 1998, IEEE Signal Processing Letters.

[66]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.