A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope

We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle. or within a core of a uniform energy density theta(c). We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.

[1]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[2]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[3]  D. Burrows,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[4]  Heather Ting Ma,et al.  Rebrightening of XRF 030723: Further evidence for a two-component jet in a gamma-ray burst , 2003, astro-ph/0309360.

[5]  Enwei LiangBing Zhang Identification of Two Categories of Optically Bright Gamma-Ray Bursts , 2005 .

[6]  Re'em Sari,et al.  Hydrodynamics of Gamma-Ray Burst Afterglow , 1997 .

[7]  Goro Sato,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004 .

[8]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[9]  W. T. Vestrand,et al.  Taxonomy of gamma‐ray burst optical light curves: identification of a salient class of early afterglows , 2008, 0803.1872.

[10]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[11]  G. Zamorani,et al.  The X-ray spectra of the extragalactic sources in the Einstein extended medium sensitivity survey , 1988 .

[12]  A. Kumar,et al.  Analytic Light Curves of Gamma-Ray Burst Afterglows: Homogeneous versus Wind External Media , 2000, astro-ph/0003246.

[13]  E. Rol,et al.  The remarkable afterglow of GRB 061007: Implications for optical flashes and GRB fireballs , 2006 .

[14]  R. S. Priddey,et al.  HI column densities of z > 2 Swift gamma-ray bursts , 2006 .

[15]  Joshua S. Bloom,et al.  The Prompt Energy Release of Gamma-Ray Bursts using a Cosmological k-Correction , 2001, astro-ph/0102371.

[16]  M. Rees,et al.  Unsteady outflow models for cosmological gamma-ray bursts , 1994, astro-ph/9404038.

[17]  Shiho Kobayashi,et al.  A CHARACTERISTIC DENSE ENVIRONMENT OR WIND SIGNATURE IN PROMPT GAMMA-RAY BURST AFTERGLOWS , 2003, astro-ph/0308409.

[18]  P. Conconi,et al.  REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination , 2006, astro-ph/0612607.

[19]  A. Panaitescu,et al.  Properties of Relativistic Jets in Gamma-Ray Burst Afterglows , 2001, astro-ph/0109124.

[20]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. I. Code Description and General Results , 2002, astro-ph/0206445.

[21]  P. Giommi,et al.  The Swift X-Ray Telescope , 1999 .

[22]  M. Rees,et al.  Relativistic fireballs: energy conversion and time-scales , 1992 .

[23]  Jonathan Granot,et al.  Two-Component Jet Models of Gamma-Ray Burst Sources , 2005 .

[24]  K. L. Page,et al.  The two-component afterglow of Swift GRB 050802 , 2007, 0706.0669.

[25]  L. Piro,et al.  Early emission of rising optical afterglows: The case of GRB 060904B and GRB 070420 , 2008 .

[26]  M. Nardini,et al.  Optical afterglow luminosities in the Swift epoch: confirming clustering and bimodality , 2008, 0801.4759.

[27]  P. Kumar,et al.  Off-Axis Afterglow Emission from Jetted Gamma-Ray Bursts , 2002 .

[28]  P. Kumar,et al.  Reverse shock emission as a probe of gamma-ray burst ejecta , 2005 .

[29]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[30]  Bing Zhang,et al.  A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment , 2007, 0705.1373.

[31]  Ronnie Killough,et al.  The Swift Ultra-Violet/Optical Telescope , 2001 .

[32]  Bing Zhang,et al.  Gamma-Ray Burst Early Optical Afterglows: Implications for the Initial Lorentz Factor and the Central Engine , 2003 .

[33]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[34]  C. B. Markwardt,et al.  Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift , 2008, 0801.4319.

[35]  Enrico Ramirez-Ruiz,et al.  Afterglow Observations Shed New Light on the Nature of X-Ray Flashes , 2005, astro-ph/0502300.

[36]  T. Sakamoto,et al.  The First Swift BAT Gamma-Ray Burst Catalog , 2007, 0707.4626.

[37]  P. Schady,et al.  Jet breaks at the end of the slow decline phase of Swift GRB light curves , 2008, 0809.4688.

[38]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[39]  L. Piro,et al.  Properties of X- Ray Rich Gamma Ray Bursts and X-Ray Flashes , 2005, astro-ph/0511272.

[40]  M. Rees,et al.  Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts , 1996, astro-ph/9606043.

[41]  M. Aloy,et al.  On the existence of a reverse shock in magnetized gamma-ray burst ejecta , 2007, 0711.1980.

[42]  Boulder,et al.  The clustering of the luminosities of optical afterglows of long Gamma Ray Bursts , 2005 .

[43]  E. Rol,et al.  The Early-Time Optical Properties of Gamma-Ray Burst Afterglows , 2008 .

[44]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[45]  G. Ghirlanda,et al.  Clustering of the optical-afterglow luminosities of long gamma-ray bursts , 2006 .

[46]  Sergio Campana,et al.  Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data , 2006 .

[47]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[48]  P. Meszaros Gamma-ray bursts , 1998 .

[49]  E. Rol,et al.  TESTING THE STANDARD FIREBALL MODEL OF GAMMA-RAY BURSTS USING LATE X-RAY AFTERGLOWS MEASURED BY SWIFT , 2006 .