Regular Vine Copulas with the simplifying assumption, time-variation, and mixed discrete and continuous margins

This thesis extends the theory of pair-copula constructions (PCCs) based on regular vines (R-vines) in several aspects. We develop PCCs for models with both discrete and continuous one dimensional marginal distributions and present algorithms for an implementation in statistical software. Also, we identify models for which the simplifying assumption that copulas corresponding to conditional distributions are constant holds. A model with Markov-Switching R-vine copulas is developed, and we consider applications to exchange rate data and data from the Second Longitudinal Study of Aging.

[1]  Alan G. White,et al.  Valuing Credit Derivatives Using an Implied Copula Approach , 2006 .

[2]  Harry Joe,et al.  Tail Comonotonicity and Conservative Risk Measures , 2012 .

[3]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[4]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[5]  Aristidis K. Nikoloulopoulos,et al.  Extreme value properties of multivariate t copulas , 2009 .

[6]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[7]  Ulf Schepsmeier,et al.  Estimating standard errors in regular vine copula models , 2013, Comput. Stat..

[8]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[9]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[10]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[11]  Francesco Pozzi,et al.  Exponential smoothing weighted correlations , 2012 .

[12]  Ninh T. Nguyen,et al.  Relationship Between Obesity and Diabetes in a US Adult Population: Findings from the National Health and Nutrition Examination Survey, 1999–2006 , 2010, Obesity surgery.

[13]  Ingrid Hobæk Haff,et al.  Parameter estimation for pair-copula constructions , 2013, 1303.4890.

[14]  Chang-Jin Kim,et al.  Business Cycle Turning Points, A New Coincident Index, and Tests of Duration Dependence Based on a Dynamic Factor Model With Regime Switching , 1998, Review of Economics and Statistics.

[15]  L. Haan,et al.  Multivariate Pareto distributions: properties and examples , 2013 .

[16]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[17]  R. Nelsen An Introduction to Copulas , 1998 .

[18]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[19]  C. Czado,et al.  Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .

[20]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[21]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[22]  Allan Timmermann,et al.  Moments of Markov switching models , 2000 .

[23]  Chang‐Jin Kim,et al.  State Space Models with Regime Switching , 1999 .

[24]  Margaret Shih,et al.  Physical activity in men and women with arthritis National Health Interview Survey, 2002. , 2006, American journal of preventive medicine.

[25]  Andréas Heinen,et al.  Asymmetric CAPM Dependence for Large Dimensions: The Canonical Vine Autoregressive Copula Model , 2008 .

[26]  Ingrid Hobæk Haff Comparison of estimators for pair-copula constructions , 2012, J. Multivar. Anal..

[27]  M. N. Shanmukha Swamy,et al.  Graphs: Theory and Algorithms , 1992 .

[28]  Ulf Schepsmeier Maximum likelihood estimation of C-vine pair-copula constructions based on bivariate copulas from different families , 2010 .

[29]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[30]  B. Penninx,et al.  Self-reports and general practitioner information on the presence of chronic diseases in community dwelling elderly. A study on the accuracy of patients' self-reports and on determinants of inaccuracy. , 1996, Journal of clinical epidemiology.

[31]  Claudia Czado,et al.  Pair Copula Constructions for Multivariate Discrete Data , 2012 .

[32]  R. Strawderman Continuous Multivariate Distributions, Volume 1: Models and Applications , 2001 .

[33]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[34]  Ulf Schepsmeier,et al.  Derivatives and Fisher information of bivariate copulas , 2014 .

[35]  F. Longin,et al.  Is the Correlation in International Equity Returns Constant: 1960-90? , 1995 .

[36]  Andrew J. Patton Copula Methods for Forecasting Multivariate Time Series , 2013 .

[37]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[38]  R. Prim Shortest connection networks and some generalizations , 1957 .

[39]  H. Joe Multivariate models and dependence concepts , 1998 .

[40]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[41]  Marco Scarsini,et al.  Archimedean copulae and positive dependence , 2005 .

[42]  Felix Salmon The formula that killed Wall Street , 2012 .

[43]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[44]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[45]  Adrian Pagan,et al.  Estimation, Inference and Specification Analysis. , 1996 .

[46]  R B D'Agostino,et al.  Can sustained weight loss in overweight individuals reduce the risk of diabetes mellitus? , 2000, Epidemiology.

[47]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[48]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[49]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[50]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[51]  Dénes König,et al.  Theorie der endlichen und unendlichen Graphen : kombinatorische Topologie der Streckenkomplexe , 1935 .

[52]  Hendrik van den Bussche,et al.  Multimorbidity Patterns in the Elderly: A New Approach of Disease Clustering Identifies Complex Interrelations between Chronic Conditions , 2010, PloS one.

[53]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[54]  Modelling Dependence in High Dimensions with Factor Copulas , 2015 .

[55]  Alan G. White,et al.  Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation , 2004 .

[56]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[57]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..